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1. PRELIMINARIES

1.1. Resolution of singularities. We will need the following result
of Hironaka on the resolution of singularities.

Theorem 1.1. Let X be an irreducible complex projective variety and
D be an effective Cartier divisor on X. Then there is a birational mor-
phism p: X' — X from a smooth variety X' given by a finite sequence
of blow ups along smooth centers supported over the singularities of D
and X such that

D + Exc(p)

15 a divisor with simple normal crossings support.

The above statement is taken from [11, §4]. For a particularly clear
exposition of the proof of this result as well as references to the litera-
ture, we refer to [7].

1.2. Divisors. Let X be a normal complex variety.

Definition 1.2. A prime divisor is an irreducible and reduced codi-
mension 1 subvariety of X. The group of Weil divisors WDiv(X)

is the set of all finite formal linear combinations D = Y d;D; where
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d; € Z and D; are prime divisors with addition defined component by

component

> diDi+ > diD; = (d;+dj)D;.
A divisor D € WDiv(X) is effective (denoted by D > 0) if D =
> d;D;, with d; > 0 and D; prime divisors.

Definition 1.3. For any divisor D € WDiv(X), one may define the
divisorial sheaf Ox (D) by setting

I'(U, 0x(D)) = {f € C(X)[((f) + D)|v = 0}.

Remark 1.4. Note that Ox (D) is a reflexive sheaf of rank one so that
Ox (D)"Y = Ox (D). Conversly, for any torsion free reflexive sheaf of
rank one F there is a Weil divisor D such that F = Ox (D). Notice
moreover that if U = X — Xgng and ¢ : U — X is the inclusion, then
.0y (Dly) = Ox (D).

Definition 1.5. For any rational function 0 # f € C(X), we let
(f) € Div(X) be the principal divisor corresponding to the zeroes and
poles of f. We say that two divisors D, D" € Div(X) are linearly
equivalent if D — D' = (f) where f € C(X). The complete linear
series corresponding to a divisor D € Div(X) is given by

|D|={D' > 0|D' ~ D}.
Definition 1.6. For any divisor D € Div(X), the base locus of D is
given by
Bs(D) = Nprejp|Supp(D).
(Here Supp(D) is the support of D i.e. the subset of X given by the
points of D.)

Definition 1.7. If |D| # 0, then |D| = P* 2 PH?(Ox(D)) for some
k> 0. We let k be the dimension of |D| and

¢\D\ X --» Pk
be the corresponding rational map. Note that if U = X — Bs(D), then
(é1p))|v is a morphism. More explicitely, if {so,..., sk} is a basis of

H°(Ox(D)), then
(@p)lu (@) = [so(x) - ... si(@)].

Definition 1.8. A k-cycle on X is a Z-linear combination of irre-
ducible subvarieties of dimension k. The set of all k-cycles on X 1is
denoted by Zy(X) and it is an abelian group with respect to addition.
Note that Zgim(x)-1(X) = WDiv(X).

3



Definition 1.9. A Cartier divisor is a Weil divisor D which is locally
defined by the zeroes and poles of a rational function f € C(X). The
group of Cartier divisors Div(X) is a subgroup of WDiv(X) and it
may be identified with T'(X,C(X)*/O%) (here C(X) denotes the sheaf
of rational functions). Note that a Weil divisor D is Cartier if and
only if the sheaf Ox (D) is invertible.

If K € {QR,...}, then we let WDivg(X) = WDiv(X) ®z K and
Divg(X) = Div(X) ®z K. If D, D" € WDiv(X), then D ~x D’ if and
Definition 1.10. If D s a Cartier divisor on X and f :' Y — X
1s a dominant morphism, then we define the pullback f*D of D as

follows: Let U; be an open covering of X and g; € C(X)* such that
DNU; = (g;) NU;, then f*D is defined by g; o f on f~H(U;).

Definition 1.11. If D is Cartier divisor on a proper normal variety
X and C C X s a curve contained in X, then the intersection of
D and C is given by D - C = deg(i*D) where i : C' — X s the
induced map from the normalization of C to X. Two Cartier divisors
D and D' (or more generally two elements D, D’ € WDiv(X) such
that D — D' € Divg(X)) are numerically equivalent (denoted by
D=D")if(D—-D")-C=0 for any curve C C X.

Numerical equivalence generates an equivalence relation in Div(X)
and in Z1(X). We let

N'(X) = Divg(X)/ = and MNX)=(Z41(X)®zR)/ =.

Note that N'(X) and Ny(X) are dual vector spaces over R. Their
dimension p(X) is the Picard number of X.

Definition 1.12. The cone of effective 1-cycles is the cone
NE(X) C Ni(X)
generated by {>_ n;C; s. t. n; > 0}.

Given a proper morphism of normal varieties f : X — Y and an
irreducible curve C' C X, we let f.(C) = df(C) where d = deg(C' —
f(C)). If f(C) is a point, then we set f.C' = 0. One sees that

ffD-C=D-fC VD € Div(Y).
Extending by linearity, we get an injective homomorphism
f N (Y) = NY(X)
and surjective homomorphisms
fe: N1(X) — N (Y), NE(X)— NE(Y).
4



Definition 1.13. If D =Y d;D; € WDivg(X), where D; are distinct
prime divisors, then we define the round down, the round up and
the fractional part of D by the formulas

"D1=) Td'D;, . Di=)Y idiuD;,  {D} =) {d}D;

where Ld; 1 1s the biggest integer < d;, "d; ' is the smallest integer > d;
and {dz} = dz - LdiJ.

Remark 1.14. Note that if D ~g D' it is not the case that "D =
"D'. If D € Divg(X), and Y C X is a subvariety, it is also not the
case that _D|y s = D.|y. We have "DV = —_D..

Definition 1.15. If D € WDiv(X) and |D| # 0, we let Fix(D) =
>° fiF; where f; is the minimum of the multiplicities of any divisor
D' € |D| along the prime divisor F;. We let Mob(D) = D — Fix(D).
Note that Bs(Mob(D)) has codimension at least 2.

1.3. Ample divisors.

Definition 1.16. A Cartier divisor D € Div(X) is very ample if it
is base point free and ¢p| : X — PV is an embedding. A Q-Cartier
divisor D € Divg(X) is ample if mD is very ample for some m > 0.

Recall the following:

Definition 1.17. A coherent sheaf F on a variety X is globally gen-
erated if the homomorphism

H'(X,F)® Ox = F
18 surjective.

Theorem 1.18 (Serre). Let D € Div(X) be an ample divisor on a
projective scheme and F a coherent sheaf on X. Then there is an
integer ng > 0 such that for all n > ng, F ® Ox(nD) is globally
generated.

Proof. [5] 11 §5. The idea is that we may assume that X = P¥. Since
F is coherent, it is locally generated by finitely many sections of Ox.
Each local section is the restriction of some global section of Opn (n) for
n > 0. By compactness, we only need finitely many such sections. [

Theorem 1.19. [Serre Vanishing] Let X be a projective scheme and
D € Div(X) be a very ample line bundle and F a coherent sheaf. Then
there is an integer ng > 0 such that for all n > ng and all 7 > 0,

Hi(X,F ® Ox(nD)) = 0.
5



Proof. (cf. [5] 1I1.5.2) We may assume that X = PV (replace F by
¢p«F ). The Theorem is clear if F is a finite direct sum of sheaves
of the form Opn(g). We can find a short exact sequence of coherent
sheaves

0— K — @®0pn(q;)) — F —0

(eg. use (1.18)). We now consider the exact sequence
@ H'(Opn (g +n)) = H(F @ Opn(n)) = HTH(K ® Opn(n)) - -

and proceed by descending induction on ¢ so that we may assume that
YK ® Opn(n)) = 0 for n>> 0 and ¢ > 0. Since h*(Opn(g; + 1)) =0
for n > 0 and ¢ > 0, we have hi(F @ Opn(n)) = 0 as required for
n>0and 7> 0. U

Recall that we also have the following

Proposition 1.20. Let X be a projective scheme and D € Div(X).

The following are equivalent

1) D is ample;

2) mD is ample for some m > 0;

3) mD is very ample for some m > 0;

4) there exists an integer my > 0 such that mD is very ample for
all m > mq;

(5) for any coherent sheaf F, there exists an integer mg = mo(F) >
0 such that F @ Ox(mD) is globally generated for all m > my;

(6) for any coherent sheaf F, there exists an integer mg = ms(F) >
0 such that

H'(X,F® Ox(mD)) =0 for all i >0, m > ms(F).
Proof. Exercise. (See [5] II §7). O

(
(
(
(

Proposition 1.21. Let f : X — Y be a finite map of projective vari-
eties, L an ample line bundle on Y, then f*L is ample on X.

Proof. For any coherent sheaf F on X, one has that R'f,F = 0 for all
1 > 0, and so by the projection formula

H(Y,F® L™ =H(X,f,FRL™) =0
for all i > 0 (as L is ample on Y). The proposition now follows from

(1.20). O

For a very ample divisor D on a projective variety X, and a subva-
riety V' C X of dimension 7, we let

D'V
6



be the degree of V' viewed as a subvariety of PH(Ox(D)). More
generally, given D € Div(X), we may pick H € Div(X) such H and
D + H are very ample. For all j > 0, we view H-W and (D+ H)-W
as subvarieties of X of dimension i — 1 so that proceeding by induction
on the dimension of W, we may assume that D~!. H - W and D! .
(D + H) - W are defined. We then let

D'-W=D".(D+H)-W—D""-H-W.
By linearity, we may define D' - W for any D € Divg(X) and W €

Zi(X) ®z R.
We have the following important result:

Theorem 1.22. [Nakai-Moishezon criterion] Let D € Div(X) be a
Cartier divisor on a proper scheme X, then D is ample if and only if

for any 0 <i <n—1 and any subvariety W of dimension i, one has
D" W > 0.

Proof. (cf. [10] 1.37) We will assume that X is projective. We may also
assume that X is irreducible. Clearly, if D is ample, then D*- W > 0.
For the converse implication, we proceed by induction on n = dim X.
When dim X = 1, the Theorem is obvious. So we may assume that
D|z is ample for all for all proper closed sub-schemes Z C X.
Claim 1. h°(X,Ox (kD)) > 0 for some k > 0 (actually k(D) = n).
We choose a very ample divisor B € Div(X) such that D+ B is very
ample. Let A € |D + B| be a general member. Consider the short
exact sequence

0— Ox(kD — B) = Ox(kD) — Og(kD) — 0.

Since Og(kD) is ample, for all k£ > 0 we have that h'(B, Og(kD)) =0
for all z > 0, and so

' (Ox(kD — B)) = k' (Ox (kD))  fori>2and k> 0.
The same argument applied to the short exact sequence
0— Ox(kD —B) - Ox((k+1)D) = O4s((k+1)D) - 0
shows that
' (Ox(kD — B)) = h'(Ox((k + 1)D)) fori>2and k> 0.

Putting this together, we see that for ¢ > 2 and k£ > 0, one has
h'(Ox (kD)) = h'(Ox((k + 1)D)) and so the number h'(Ox (kD)) is
constant. But then for £ > 0

hO(X, Ox (kD)) > h°(X, Ox (kD)) — h* (X, Ox (kD))

= x(X,Ox (kD)) + (constant) = D" /n! - k" + O(k — 1).
7



Claim 2. Ox (kD) is generated by global sections for some k& > 0.
Fix a non-zero section s € H°(X,Ox(mD)). Let S be the divisor
defined by s. Consider the short exact sequence

0 — Ox((k—1)mD) — Ox(kmD) — Og(kmD) — 0.

By induction Og(kmD) is generated by global sections and so it suf-
fices to show that for k& > 0, the homomorphism H°(X, Ox(kmD)) —
H°(S,0s(kmD)) is surjective. Arguing as in Claim 1, one sees that
h'(X, Ox(kmD)) is a decreasing sequence and is hence eventually con-
stant as required.

Conclusion of the proof. ¢,p : X — P¥ is a finite morphism for
k> 0. If in fact C is a curve contracted by ¢pp, then kD - C' =
Opn (1) - ¢xp(C) = 0 which contradicts C'- D > 0. The Theorem now
follows as kD = ¢;,Op~ (1) is ample (as it is the pull-back of an ample
line bundle via a finite map). O

Exercise 1.23. Let X be a projective variety, H an ample divisor on
X. A divisor D on X is ample if and only if there exists an € > 0 such
that

D-C

H-C™—
for all irreducible curves C' C X.

Theorem 1.24. [Nakai’s Criterion] Let D be a divisor on a projective
scheme X. D is ample if and only if D - Z > 0 for any Z € NE(X) —
{0}.

Proof. Exercise. 0

Theorem 1.25. [Seshadri’s Criterion] Let D be a divisor on a projec-
tive scheme X. D is ample if and only if there exists an € > 0 such
that

C-D > emult,(C)
forallz e C C X.

Proof. Assume that D is ample, then there exists an integer n > 0 such
that nD is very ample, but then

nD - C > mult,(C)

forallz € C C X.

For the reverse implication, we proceed by induction. Therefore, we
may assume that for any irreducible subvariety Z C X, the divisor D]z
is ample and so D4™Z . 7 > (. By (1.22), it is enough to show that
D™ > 0. Let

X — X
8



be the blow up of X at a smooth point. Then p*D — eF is nef. In fact,
for any curve C" C X’ we either have C' = p(C") is a curve and then

(uW*D—¢€E)-C'"=D-C —emult, C >0,
or 4(C") = x and then since C' C E 2 P" ! and Op(E) = Opn-1(—1)
(W'D —€E) - C" = edegC' > 0.
But then, by (1.35)
(W'D —€eE)"=D"—¢">0
and this completes the proof. O

1.4. Positivity of divisors. Given a divisor on a variety X there are
several notions of positivity that will be essential in what follows. We
begin with the following:

Definition 1.26. If D € Divg(X) is a R-Cartier divisor on a proper
variety X, then D is nef if D - C > 0 for any C € Z;(X).

The terminology nef was introduced by M. Reid. It stands for nu-
merically eventually free. The point is that if D is eventually free (i.e.
if it is semiample see (1.28)) then it is easy to see that D is nef.

Exercise 1.27. Let X be a projective variety, H an ample divisor on
X. A divisor D on X is nef if and only if D + eH is ample for all

rational numbers € > 0.

Definition 1.28. A divisor D € Div(X) (or more precisely the com-
plete linear series |D|) is base point free if for any point x € X there
is a divisor D' ~ D such that x ¢ Supp(D’). This is equivalent to
requiring that the sheaf Ox (D) is generated by global sections.

A divisor D € Divg(X) is semiample if there is an integer m > 0
such that |mD]| is base point free.

A divisor D € Divg(X) is semiample if we may write D = Zle r; D;
where r; € R and D; € Divg(X) are semiample.

Note that if D € Div(X) is base point free, then there is a morphism
ooy : X = PH(Ox(D)).

Definition 1.29. For any divisor D (or line bundle L), one can define
the Kodaira dimension

£(D) := max{dim ¢p(X)}

here we set dim ¢,,,p(X) = —oo if h°(Ox(mD)) = 0.
9



Remark 1.30. Frequently, one lets dim ¢,,,p(X) = —1 if l°(Ox(mD)) =
0. If we adopt this convention, then
k(D) = tr. deg.cR(D) — 1.

We have that k(D) < 0 if and only if h°(Ox(mD)) = 0 for all
m > 0.

If k(D) = 0 then there exists an integer mg such that h°(Ox(mD)) =
1 if and only if m > 0 is divisible by mg. (It is an instructive excercise
to prove this.)

It is known (cf. [11, §2]) that if k(D) > 0, then there exist constants
A, B > 0 such that for all m sufficiently divisible, we have

AmrX) < h’(Ox(mD)) < Bm"X),
so that k(D) = k if and only if lim sup h®(Ox(mD))/m" # 0.
Definition 1.31. A divisor D € WDivg(X) is big if x(D) = dim(X).
Remark 1.32. If D is big, then we define the volume of D by
0 D
vol(D) = lim sup M
mn”/n!

where n = dim(X). It is known that in this case
lim sup h®(Ox(mD))/m" = lim h°(Ox(mD))/m"

(cf. [11]) and that D ~g A+ B where A is an ample Q-divisor and B
is effective cf. [11, §2]. Notice moreover that if D = D’ then D is big
if and only if D' is big cf. [11, §2].

Remark 1.33. If 0 < k = k(D) < dim(X), then it is not known if
lim h°(Ox (mD))/m”
always exists.

Definition 1.34. A divisor D € WDivg(X) is pseudo-effective if
and only if for any ample divisor A and any rational number € > 0, the
divisor D + €A is big. (Equivalently D is pseudo-effective if and only
if D 1s in the closure of the big cone. This property is also determined
by the numerical equivalence class of D.)

Theorem 1.35. [Kleiman’s Theorem/ Let X be a proper variety, D a
nef divisor. Then DY™Z .7 >0 for all irreducible subvarieties 7 C X.

Proof. (cf. [11] 1.4.9) We assume that X is projective (Chow’s Lemma)
and irreducible. When dim X = 1, the Theorem is clear. By induction
on n = dim X, we may assume that

DImZ . 7> VZ C X wrreducible of dim Z < n,
10



and we must show that D™ > 0. Fix H an ample divisor and consider
the polynomial
P(t) .= (D+tH)" € Q[t].
We must show that P(0) > 0. For 1 < k < n, the coefficient of ¢* is
D FHF > 0.

Assume that P(0) < 0, then one sees that P(t) has a unique real root
to > 0.
For any rational number ¢ > ¢y, one sees that

(D+tH)"™” .7 >0  VZC X irreducible of dimZ < n,
and so by (1.22), D + tH is ample. We write
Pt)=Qt)+ R(t)=D-(D+tH)" ' +tH - (D+tH)"".

As D+tH is ample for t > tg, one has that (D+tH)" ! is an effective 1-
cycle, so Q(t) > 0 for all rational numbers ¢ > ¢, and so Q(to) > 0. One
sees that all the coefficients of R(t) are non-negative and the coefficient
of t" is H" > 0. It follows that R(ty) > 0 and so P(ty) > 0 which is
the required contradiction. O

2. THE SINGULARITIES OF THE MINIMAL MODEL PROGRAM

Definition 2.1. If X is a normal variety and i : U — X s the inclu-
sion of the nonsingular locus. Then U 1is a big open subset and we let
wy be the canonical line bundle of U. wy is an invertible sheaf whose
sections may be locally written as f-dzy A...A\dz, where 2y, ..., z, are
local coordinates and f is a reqular function. We define the canonical
sheaf as the divisorial sheaf wxy = i,wy. A canonical divisor on X is
a divisor Kx such that Ox(Kx) = wx. Note that, despite the fact that
it is usaually referred to as “the canonical divisor”, Kx is not uniquely
defined and may be non-effective.

Definition 2.2. A log pair (X, D) consits of a normal variety X and
a divisor D € WDivg(X) such that Kx + D € Divg(X).

Definition 2.3. A log resolution of a pair (X, D) is a proper bira-
tional morphism f :Y — X from a smooth variety such that Exc(f)
is a dwisor and f~Y(D) U Exc(f) has simple normal crossings sup-
port (i.e. each component is a smooth divisor and all components meet
transversely).

Exercise 2.4. Compute a log resolution for 3 lines meeting at a point
and for the cusp y* = 3.
11



Definition 2.5. Given a log pair (X, D) and a log resolution f:Y —
X, we write

Ky = f*(Kx + D)+ Ay(X, D)
where [, Ky = Kx and f,Ay(X,D) = —D. The divisor Ay (X, D) is
the discrepancy divisor of (X, D). We will also write Ay (X, D) =
> ap(X, D)P where P are prime divisors on'Y . The numbers ap(X, D)
are the discrepancies of (X, D) along P. We will also write

AY(X7 D) = EY(X7 D) _PY(Xa D)

where By (X, D) and 'y (X, D) are effective with no common compo-
nents. The total discrepancy of (X, D) is given by

total discrepancy (X, D) = inf{ap(X, D)|P is a prime divisor over X},
and the discrepancy of (X, D) is given by
discrepancy (X, D) = inf{ap(X, D)|P is an exceptional prime divisor over X }.

Remark 2.6. Note that Ay (X, D) is uniquely defined. To prove this,
use the Negativity Lemma given below.

Lemma 2.7 (Negativity Lemma). Let f : Y — X be a proper bira-
tional morphism of normal varieties. If —B € Divg(Y') is f-nef, then
B is effective if and only if f.B is effective. Moreover, if B is effective,
then for any x € X, either f~(z) C Supp(B) or f~!(x)NSupp(B) = 0.

Proof. See [10, Lemma 3.39). O

Exercise 2.8. Let f : Y — X be a proper birational morphism and set
Dy = —Ay (X, D). Show that total discrepancy(X, D) = total discrepancy(Y, Dy)
and give an exzample where discrepancy(X, D) = discrepancy(Y, Dy ).

Exercise 2.9. If (X, D) and (X, D’) are two log pairs such that D <
D', then show that for any log resolution f :' Y — X of (X,D) and
(X, D), we have Ay (X, D) > Ay(X,D’).

Exercise 2.10. Let X be a smooth variety D = > a;D; a sum of
distinct prime divisors, Z C X a smooth subvariety of codimension
k. Let p: Bz(X) — X be the blow up of X along Z and E be the
exceptional divisor dominating Z. Show that ap(X,D) =k—1-=>"a;-
multZDi.

The numbers ap(X, D) will allow us to define several important
classes of singularities that are essential for the Minimal Model Pro-
gram. The idea is that the bigger the discrepancy or total discrepancy
of (X, D) is, then the less singular the pair (X, D) is. It is important
to notice the following:

12



Lemma 2.11. If the total discrepancy of (X, D) is < —1, then the
total discrepancy of (X, D) is —oo.

Proof. Exercise. l

Definition 2.12. A pair (X, D) is log canonical (respectively kawa-
mata log terminal) if ap(X,D) > —1 (resp. ap(X,D) > —1) for
all prime divisors P over X. A pair (X, D) is canonical (respectively
terminal) if ap(X, D) > 0 (resp. ap(X, D) > 0) for all prime divisors
P exceptional over X.

Remark 2.13. The condition that (X, D) is log canonical or kawa-
mata log terminal can be checked on any log resolution of (X, D). It is
known that kawamata log terminal singularities are rational (i.e. for
any resolution f :'Y — X, we have R'f.Oy = 0 for i > 0) and
Cohen-Macaulay cf. [10, §5].

Remark 2.14. If dim X = 2 and (X, D) is a terminal pair, then X
is smooth. If dim X = 2 and (X, D) is a canonical pair, then X has
at most rational double point singularities which are not contained in

Supp(D).

Remark 2.15. Ifdim X = 2 then (X,0) is a terminal (resp. canonical,
kawamata log terminal, log canonical) pair if and only if X is smooth
(resp. C?*/finite subgroup of SL(2,C), C?/finite subgroup of GL(2,C)),

simple elliptic, cusp, smooth, or a quotient of these by a finite group).

Exercise 2.16. If X is the cone over a curve of genus g, and E s the
exceptional divisor corresponding to the blow up of the vertex. Show
that ag(X,0) = =1 (resp. —1+2/n, < —1)iffg=1 (resp. g =10 1is a
rational curve of degree n >0, g > 2).

Remark 2.17. As observed above, if v € X s a rational double point,
then (X,0) is canonical but not terminal. If x € X is the vertez of a
cone over a rational curve, then (X,0) is Kawamata log terminal, but
not canonical. If x € X 1is the vertex of a cone over an elliptic curve,
then (X, 0) is log canonical but not Kawamata log terminal.

Exercise 2.18. Given a log pair (X, D) and two log resolutions f :
Y - X and f' : Y — X such that f" = f owv for some morphism
v: X' — X, show that v, Ay (X, D) = Ay (X, D).

Definition 2.19. We say that a pair (X, D) is purely log terminal
if the discrepancy of any exceptional divisor is greater than —1.

Remark 2.20. The notion of a purely log terminal pair (X, D) is par-

ticularly useful when S = LD is irreducible. In this case S is normal
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and the pair (S,0) defined by adjunction (Kx + D)|s = Kg + © is
Kawamata log terminal.

Definition 2.21. We say that a pair (X, D) is divisorially log ter-
minal if there is a log resolution f :' Y — X such that all f-exceptional
divisors 2 C'Y have discrepancy greater than —1.

Remark 2.22. If X = P? and D is a curve with a node, then (X, D)
is log canonical but not divisorially log terminal. If X = C? and D is
the union of the x and y azis, then (X, D) is divisorially log terminal
but not purely log terminal.

Proposition 2.23. Given a divisorially log terminal pair (X, D), there
1s a resolution f 'Y — X which is an isomorphism at the general point
of each component of the strata of _D_.

Proof. [14] O

Remark 2.24. Using the above proposition, one can show that a pair
(X, D) is divisorially log terminal if and only if there is a closed subset
Z C X such that (X — Z,D|x_z) is log smooth (cf. 2.29) and if E is
a divisor over X with center contained in Z, then ag(X, D) > —1.

Exercise 2.25. A divisorially log terminal pair (X, D) is Kawamata
log terminal if and only if LDL = 0.

Definition 2.26. Given a log pair (X, D), a place of non Kawa-
mata log terminal singularities of (X, D) is a divisor E over X
such that ap(X, D) < —1. A center of non Kawamata log termi-
nal singularities of (X, D) is the image of a place of non Kawamata
log terminal singularities of (X, D). We let the non Kawamata log
terminal locus of (X, D) denoted by Nklt(X, D) be the subset of X
defined by the union of all centers of non Kawamata log terminal sin-
gularities of (X, D).

Remark 2.27. Traditionally non Kawamata log terminal places or
centers are called log canonical places or centers. This is meaningful
for log canonical pairs, but otherwise confusing.

Remark 2.28. One can similarly define places and centers of non log
canonical, non canonical and non terminal singularities. In the case of
non canonical and non terminal singularities, one should only consider
divisors E exceptional over X.

Definition 2.29. A pair (X, D) is log smooth if X is smooth and D
has simple normal crossings.
14



Remark 2.30. If (X, D) is log smooth, then Nklt(X, D) = Supp(LDJ).
FEach component of the strata of LDJ is a non Kawamata log terminal
center of (X, D). If X is smooth and P is a prime divisor on X and
Z C P is a subvariety of codimension ¢ < multp(D) in X, then Z is a
non Kawamata log terminal centers of (X, D).

Exercise 2.31. If (X, D) is a Kawamata log terminal pair, then there
is a log resolution f:Y — X such that I'y (X, D) is smooth.

Exercise 2.32. If (X, D) is a Kawamata log terminal pair, then (X, D)
has finitely many places of discrepancy ag(X, D) > 0.

Definition 2.33. If (X, D) is a log canonical pair, Z C X is a closed
subscheme and G € Divg(X) is an effective R-divisor. Then the log
canonical threshold of G along Z with respect to (X, D) is given by

cz(X, D; Q) :=sup{c > 0|/(X, D + ¢@) is LC near Z}.

Note that in order to compute cz(X, D;G) it suffices to pick a log
resolution f : Y — X of (X,D + G), then cz(X, D;G) is given by
the supremum of ¢ € R such that multp(—Ay(X,D) + f*G) < 1
for all divisors E on Y whose image intersects Z. Equivalently ¢ =

min{iﬁlg—%} for all divisors £ on Y whose image intersects Z. If
Z =X welet cz(X, D;G) =: ¢(X, D;G).

Exercise 2.34. Let X = C? and G be the cusp defined by y* = x3.
Show that ¢(X,0;G) = 5/6.

Exercise 2.35. Let X be the cone over a rational curve of degree n

and G be a line through the vertex v € X. Show that ¢(X,0;G) = 1
and (X,G) is PLT.

2.1. Vanishing theorems.

Theorem 2.36. [Kodaira Vanishing Theorem] Let X be a smooth pro-
jective variety and D € Div(X) an ample divisor, then

H'(X,0x(Kx + D)) =0 for all 7 > 0.

Remark 2.37. By Serre duality, this is equivalent to the condition that
H(X,0x(—=D)) =0 for all i < dim X .

In applications, it is usually necessary to have a more flexible version
of (2.36). The following theorem is often sufficient.

Theorem 2.38. [Kawamata-Viehweg Vanishing] Let X be a smooth
projective variety and D € Div(X). If D = M+F where M € Divg(X)
is nef and big and F € Divg(X) has simple normal crossings and
LFL.=0.
Then H'(X,Ox(Kx + D)) =0 for all i > 0.
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Exercise 2.39. Use (2.38) to deduce that if X is a smooth projective
variety, f : X — Y is a projective morphism and D € Div(X), D =
M + F where M € Divg(X) is relatively nef and big and F' € Divg(X)
has simple normal crossings and LFs = 0, then R f.(X,Ox(Kx +
D)) =0 for alli > 0.

The above theorem generalizes to the following:

Theorem 2.40. [General Kawamata-Viehweg Vanishing] Let (X, A)
be a Kawamata log terminal pair and D € WDiv(X). If D = A+ M
where M € Divg(X) is nef and big.

Then H'(X,Ox(Kx + D)) =0 for all i > 0.

Proof. Assume for simplicity that D € Div(X). Let f : Y — X be a
log resolution. Then since —Fy +"Ey ' = —FEy — .—FEy, = {—FEy},
we have

ff(KEx+D)+"Ey'=Ky+ Ty +{-Eyv}+ "M
where f*M is nef and big. Tt follows that R'f.Oy(f*(Kx + D) +

"Ey7) = 0 for i > 0 and that H'(Oy(f*(Kx + D) +"Ey")) = 0 for
i > 0 (cf. the log smooth case of (2.39)). But then, as

[Oy(f*(Kx + D) +"Ey") = Ox(Kx + D),
we have
H'(Ox(Kx + D)) = H'(Oy (f*(Kx + D) +"Ey"))
and the theorem follows. O
The above theorem is a special case of the following

Theorem 2.41. [Relative Kawamata-Viehweg Vanishing] Let (X, A)
be a Kawamata log terminal pair and D € WDiv(X). If f : X = Y
is a projective morphism and D = A + M where M € Divg(X) is nef
and big over Y (i.e. M -C >0 for any curve C C X contracted by f
and M|x, is big where X, is the general fiber of f).

Then R f.Ox(Kx + D) =0 for all i > 0.

Proof. Let H be a sufficiently ample divisor on Y, then M + f*H is
nef and big, R'f,Ox(Kx + D) ® Oy(H) is generated by global sec-
tions and HY(X,R'f,Ox(Kx + D) ® Oy(H)) = 0 for all j > 0. By
the projection formula and a spectral sequence argument we have that
H{(X,O0x(Kx + D + f*H)) = H°(Y,R' f.Ox(Kx + D) ® Oy(H)).
By (2.40) the group on the left vanishes and since R'f,Ox(Kx +
D) ® Oy (H) is generated by global sections, then R'f.Ox(Kx + D) ®
Oy (H) = 0. Since Oy (H) = 0 is locally free, the claim follows. O
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Exercise 2.42. Let M and H be as above. Show that M + f*H is nef
and big.

We will need a slightly more general version that applies to divisori-
ally log terminal pairs.

Theorem 2.43. Let (X, D) be a log smooth log canonical pair and

f: X — Z be a projective morphism. Let N € Div(X) be a divisor

such that N — D is nef over Z and big over Z and the restriction of N

to any non-Kawamata log terminal center of (X, D) is big over Z.
Then

R'f.Ox(Kx + N) =0, for i > 0.

Proof. We proceed by induction on the dimension of X. If dim X =1,
then deg(NN) > 0 and the claim follows by (2.41). If dim X > 2, then
we proceed by induction on the number of components of LD If
LD = 0, the claim follows by (2.41). Otherwise, let S € LD be any
prime divisor and consider the short exact sequence

0= Ox(Kx + N —S) = Ox(Kx +N) = Os(Kg+ (N — 5)|s) = 0.

By induction on the number of components of LDJ, we have that
R f.Ox(Kx + N —S) = 0 for all ¢ > 0 and by induction on the
dimension, we obtain that R'f,(Kg+ (N — S)|s) = 0. The assertion
now follows immediately. O

2.2. Calculus of non Kawamata log terminal centers.

Theorem 2.44. [The connectedness lemma of Kolldr and Shokurov]
Let f : X — Z be a proper morphism of normal varieties with connected
fibers and D € WDivg(X) such that —(Kx + D) € Divg(X) is f-nef
and f-big. Write D = DY — D~ where D" and D~ are effective with no
common components. If D~ is f-exceptional (i.e. all of its components
have image of codimension at least 2), then

NKklt(X, D) N f(z)
is connected for any z € Z.

Proof. Let 1o ©'Y — X be a log resolution of (X,D) and Dy =
—Ay(X, D). Then

NkIt(X, D) = u(NkIt(Y, Dy)).

Replacing X by Y, we may assume that X is smooth and D has simple
normal crossings support. We write D = D=! 4+ D<! for the decompo-

sition of D in to components of multiplicity > 1 and < 1 respectively.
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In particular Nklt(X, D) = Supp(D=!). Consider the short exact se-
quence

0— Ox("T=D7) = Ox("T—D<'") = Og("T—=D<'") = 0
where S = L D=! . Since
'_—D_l = Kx—Fr—(Kx—{—D)—l = KX — (Kx—l—D) +{Kx—|—D}7

by Kawamata Viehweg vanishing, we have that R'f,.Ox("—D7) = 0
so that the homomorphism

fOx(T=D<'7) = £.O5("=D=17)

is surjective. Now, "—D<!17 = —_ D<!, > 0 is effective and exceptional
and so f.Ox("T—D<'") = Oz. Tt follows that Oy — f,Og("—D<!")
is surjective. As T—D<!7 is effective, we have an inclusion f,0Og C
[+Os("—D='7) and hence a surjection Oz — Oys) — f.Og. Therefore
S — f(95) has connected fibers. O

Remark 2.45. There are two main cases of interest in the above
Theorem. If Z = Spec(C) so that (X, D) is a weak log Fano, then
Nklt(X, D) is connected. If f : X — Z is birational, (Z, B) is a log
pair D = —Ax(Z, B) and (X, D) is log smooth, then this says that the
fibers of the log canonical places of (Z,B) on any log resolution are
connected.

Theorem 2.46. Let (X, D) be a log canonical pair such that (X, Dy) is
Kawamata log terminal for some Dy € WDivg(X). If Wy and Wy are
non Kawamata log terminal centers of (X, D), then so is any irreducible
component W of Wi N\ Wy. Therefore, for any point v € X such that
(X, D) is not Kawamata log terminal near x, there is a unique minimal
center of not Kawamata log terminal singularities for (X, D) containing
x.

Proof. The question is local, so we may assume that X is affine and
W = W;NW,. Pick D; general divisors containing W; and 1 : Y — X
a log resolution of (X, D + Dy + D; + D3) such that there are divisors
E; C Y which are non Kawamata log terminal places of (X, D) with
centers W;. Therefore, we have that multg, I'y (X, D) = 1. Let ¢; =
multg, ©*D and e, = multg, ©*D;. By our assumptions e;, e, > 0. Let
a; = 2—/, then E; and FE, are non Kawamata log terminal places of
(X,(1 =)D + e(a1Dy + asDy)) for 0 < € < 1 and NKLT(X, (1 —
€)D + €(a1 Dy + asDy)) = W7 U Ws,. By the Connectedness Theorem
(2.44), for any € > 0 there are non Kawamata log terminal places
Fi(e) CY of (X,(1—¢€)D + e(a1 D1 + a2 D5)) with centers contained in
W; such that Fi(e) N Fy(e) # 0. We may assume that Fj(e) = F; are
18



independent of € (by finiteness of the number of exceptional divisors).
By continuity, these are also non Kawamata log terminal places of
(X, D). But then W = f(Fy) N f(F2) is a non Kawamata log terminal
center of (X, D). O

Theorem 2.47. Let (X, D) be a log canonical pair and W a minimal
non Kawamata log terminal center of (X, D). Assume that (X, Dy) is
Kawamata log terminal for some Dy € WDivg(X). If W is a prime di-
visor, then there exists a divisor Dy, € WDivg(W) such that (W, Dy)
158 Kawamata log terminal and

Let f:Y — X be a log resolution of (X, D), W' = (f~1),W and set
Kw + Dw = (flw)«((Ky — Ay (X, D))|w").

Proof. See [9, §16]. O

Remark 2.48. [t is conjectured that (2.47) holds regardless of the
codimension of W. By a result of Kawamata, it is known that if H

1s ample and € > 0 is a rational number, then there exists a divisor
Dy € WDivq such that

(Kx+D+€H)|W ~Q Kw+DW7

and (W, Dy ) is Kawamata log terminal.
2.3. Rational Singularities.

Definition 2.49. A variety Y has rational singularities if there is a
resolution f : X — Y such that f,Ox = Oy and R'f.Ox = 0 for all
1> 0

Remark 2.50. Y has rational singularities if and only for any res-
olution f : X = Y, we have f.Ox = Oy and R f.Ox = 0 for all
1 > 0. It is also known that Y has rational singularities if and only
if Y is Cohen-Macaulay and for some resolution f : X — Y, we have
f*WY = Wx.

Definition 2.51. A coherent sheaf F' on a scheme X is Sy at a point
x € X, if so is its stalk F, as a module over the local ring Oy x. This
means that there is a F, reqular sequence x1,...,x, € m, of length r =
min{d,dim O, x} i.e. z; is not a zero divisor for F,/(x1,...,x;—1)F,.
F is Sg on X if it is Sq at every point x € X. X is Sq if Ox is Sy.

A coherent sheaf F' on a scheme X is Cohen-Macaulay if for any
point © € X it is Sy for d = dimSuppF, (i.e. if it admits a regu-
lar sequence of length equal to the dimension of its support). In other

words F is Cohen-Macaulay at x if there are elements x4, ..., x, € m,
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with r = dim Supp(F,) and the image of x; in F,/(x1,...,x;i1)F, is
not a zero divisor for 1 < i <r. Fquivalently F' is Cohen-Macaulay at
x if there is an element y € m, such that its image in F,/yF, is not
a zero divisor and F, /yF, is Cohen-Macaulay or if there are elements
x1,. .., T € My withr = dim Supp(F,) and dim SuppF, /(x1,...,z,)F, =
0.

Remark 2.52 (Serre’s Criterion). If dimX = 2 and x € X is an
1solated singularity, then X is Cohen-Macaulay at x if and only if it is
normal.

Theorem 2.53. If X is a normal projective variety and A € Div(X)
is ample on X, then a coherent sheaf F' on X with dim Supp(F) = n
then F is Cohen-Macaulay if and only if H'(X, F ® Ox(—rA)) =0 for
1<mn andr > 0.

Proof. [10, 5.72]. O

Proposition 2.54. If X is a normal projective variety and f : Y — X
a resolution, then f is a rational resolution if and only if X is Cohen-
Macaulay and f.wy = wy.

Proof. (see [10, 5.12]) Let A € Div(X) be ample. Since f*A is nef and
big, by (2.38), one sees that H (Y, wy(rf*A)) = 0 for all i > 0 and
r > 0. and by Serre duality we have

H" (Y, Oy(=rf*A)) =0,

where n = dim X.
If f is a rational resolution, then R*f,.Oy = 0 for i > 0 and so by an
easy spectral sequence argument,

H'(X, f.Oy ® Ox(~1A)) = H'(Y,Oy(-rf*A)) =0

for any » > 0 and 7 < n. Since X is normal f,Oy = Ox and so by
(2.53), X is Cohen-Macaulay. Notice that we also have

WO(X, wy(rA)) = h"(X, Ox(—rA)) = h"(Y, Oy (—rf*A))

= h'(Y,wy(rf 4)) = h(X, fuwy(rA))
where the first equality holds by [10, 5.71]. But since wx(rA) and
fawy (rA) are generated for r > 0, it follows that the inclusion f.wy —
wx is an isomorphism.
Suppose now that X is Cohen-Macaulay and f,wy = wx. Proceeding
by induction on the dimension and cutting down by hyperplanes we
may assume that R’f,Oy is supported on points for any ¢ > 0. Thus

HI(X, R f.Oy(—rA)) =0 for i,j > 0 and since X is Cohen-Macaulay
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HI(X, f.Oy(—rA)) = 0 for j < n and r > 0. By an easy spectral
sequence argument,

HY(X, R'f.0y @ Ox(=rA)) = H'(Y, Oy (-1 f"A)) =0
forany r >0and 0 <i<n—2. Thus R f,.Oy =0for 1 <i<n-—2.
Also there is a short exat sequence

0— HY(R"'£,0y(—rA)) — H*(Ox(—rA)) = H"(Oy(—rf*A)) — 0.

We claim that the last map is an isomorphism and hence R"~!f, Oy =
0.
To see the claim note that as f.wy = wx, then

HY(Y,wy(rf*A)) = HY(X, fuwy(rA)) =2 H (X, wx(rA))
and the claim follows by Serre duality. 0

Theorem 2.55. If (X, D) is a divisorially log terminal pair, then X
has rational singularities.

Proof. We will assume that X is projective, the pair (X, D) is Kawa-
mata log terminal. Consider a log resolution f : Y — X. We may
write

TEy(X,D)7 = Ky — f*(Kx + D)+ I'y(X, D) + {—Ey(X, D)}.
AsTy (X, D)+{—Ey (X, D)} has simple normal crossings and . I'y (X, D)+
{—Ey(X,D)}s=0, then

R f,Oy(TEy(X,D)")=0  Vi>0.

Note that we also have f.Oy ("Ey (X, D)) = Ox. Let A € Div(X) be
ample. We have a diagramm

H'(Ox(-r4)) —— H'(Ox(=r4))

[ I
H'(Oy(—rf*A)) —— H'(Oy("Ey(X,D)"—rf*A)).
The existence of the vertical map [ follows since there is a map of
complexes Ox(—rA) = f.Oy(—rf*A) — R f.Oy(—rf*A) and hence
of cohomology groups

H'(X,0x(—rA)) = H(X, R f.Oy(—rf*A)) = H(Y, Oy (—rf*A)).
From the Leray Spectral sequence, we also get that « is an isomorphism.
But as h'(Oy(—rf*A)) = " (wy(rf*A)) = 0 for i < n, we have

that H'(Ox(—rA)) = 0 for i < n and r > 0. It is easy to see that
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the diagram commutes. Therefore X is CM. When i = n, we get an
injection

H"(Ox(—rA)) = H"(Oy(-rf"A))
i.e. a surjection

H(wy (rf*A)) = H(fiwy ® Ox(rA)) — H'(wx ® Ox(rA))

so that f.wy — wx is surjective. O

3. MULTIPLIER IDEAL SHEAVES

Definition 3.1. Let D > 0 be a R-diwisor on a smooth variety X and
f:Y = X be a log resolution of (X, D). Then the multiplier ideal
sheaf of (X, D) is defined as

J(X,D)=J(D)=Jp := f.Oy(Ky/x —f"Da).

Notice that J(X, D) C f.Oy = Ox. In order to show that multiplier
ideal sheaves are well defined, one needs the following.

Proposition 3.2. The definition in (3.1) does not depend on the log
resolution.

Proof. Let f : Y — X and [’ : Y’ — X be two log resolutions of
(X, D). We may assume that f’ = fog for some morphism g : Y’ — Y.
We have

[LO0yv1(Kyx —(f')"Da) = f.(Oy (Kyyx) ® g.Oy+ (Kyr )y —Lg" f*DJ))

and so it suffices to prove that g.Oy+(Ky+/y —Lg* f*D1) = Oy:(—L f*D.).
This follows from Lemma (3.3) below (cf. [12, Lemma 9.2.19]). O

Lemma 3.3. Let X be a smooth variety and D be a divisor with simple
normal crossings support and f 1Y — X be a log resolution of (X, D),
then

F.Oy(Ky/x — Lf*D) = Ox(—LD.).

Proof. Using the projection formula, it is easy to see that we may
assume that D = {D}. We must then show that Ky ,x —vf*Ds > 0.
This can be done by a local computation. Let E be any divisor in Y
with center Z on X. We may work locally around a general point of
Z and assume that D = > d;D; where Z C SuppD. Let z; be local
coordinates on X with D; = {x; = 0} and y; be local coordinates on Y’
with £ = {y; = 0}. We let ¢; = multg(f*D;) so that multg(f*D) =
Y dic; < > c¢i. We have z; = yi" - b; for some regular functions b; on
Y. It follows that dz; = yfi_lcibidyl + y1*db; and hence

dey A ... Ndx, =y gdy AL A dy,,
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for some regular function g on Y and v = > ¢;. Therefore

U

Remark 3.4. One could also define the multiplier ideal sheaf of a pair
(X, A) with respect to a divisor D € Divg(X) by

J(X,A); D) = f,Oy(Ky — Lf*(Kx + A+ D).)

where f Y — X s a log resolution of (X,A + D). Note that
J((X,A); D) =J(X,A+D);0) and if X is smooth, then J((X,A); D) =
J(X,A+ D).

One should view the multiplier ideal sheaf 7 (X, D) as a measure of
the singularities of (X, D). Notice for example that a pair (X, A) is
kawamata log terminal if and only if J((X,A);0) = Ox. We have the
following basic properties:

Proposition 3.5. Let D > 0 be an R-divisor on a smooth n-dimensional
variety X.
(1) If G € Div(X), then J(D+ G) = J(D) ® Ox(—GQ).
(2) If D has simple normal crossings support, then J (D) = Ox(—LDJ).
(3) If D1 < Dy with 0 < D; € Divg(X), then J(Dy) C J(Dy).
(4) If f 1Y — X is a proper birational morphism of smooth vari-
eties, then

J(X, D) = [(TY, ['D) @ wy/x).

(5) If mult, D > n, then J(D) C Z, where x € X is any point and
I, is the corresponding mazximal ideal.

(6) If mult, D <1 then J(D), = O, x.

Proof. Properties (1-4) are easy excercises. To see property (5), let
i X" — X be the blow up of X at x and E be the exceptional
divisor. By (4) and (1), we have

J(D) = pu(J (WD) @ wxr/x) = pu(JT (1D — nE) ® wxryx (—nk))

Property (6) is (3.20). O

Remark 3.6. The same proof shows that if Z is an irreducible subva-
riety of dimension k and mult; D > n —k+p—1, then J(D) C Z,7~
where T,"” is the p-th symbolic power of Iy i.e. the ideal of reqular
functions vanishing along a general point of Z to order at least p.
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Theorem 3.7. [Nadel Vanishing] Let X be a smooth variety, 0 < D €
Divg(X) and f : X — Z be a projective morphism. If N € Div(X) is
such that N — D s f-nef and f-big, then

R'f.(Ox(Kx + N)®@ J(D))=0  Vi>0.
Proof. Let g : Y — X be a log resolution of (X, D), then ¢*(N — D) is
h-nef and h-big where h = fog. As g*(N — D) is also g-nef and g-big
and it has simple normal crossings support, by (2.41), we have
Rg.Oy(Ky +"f*(N-=D)1)=0  Vj>0.
Similarly, we have
R'h (Oy(Ky +Tf*(N - D)) =0 Vi > 0.
Since
g*OY(KY + '_f*(N — D)—l) = OX(KX -+ N) ® g*Oy<Ky/X - I_f*<D)J)
= Ox(Kx + N)® J(D),
we have that
O
Corollary 3.8. Let X be a smooth projective variety, 0 < D € Divg(X),
N, B € Div(X) are such that N — D is nef and big and |B| is very am-
ple, then
Ox(Kx +nB+ N)® J(D)
15 generated by global sections for all n > dim X.

Proof. Let X; = By N...N B; be the intersection of i general elements
B; € |B| that contain z. Consider the short exact sequences

0—Ox,(Kx+JjB+N)®J(D) = Ox,(Kx+(j+1)B+N)® J(D)
= Ox,,(Kx+(+1)B+N)®J(D) —0.

By induction on i, one shows that H*(Ox,(Kx + jB + N)) = 0 for all

k > 0 and j > i. It follows that if n > dim X, then Ox(Kx + nB +

N)Y®TJ(D) = Ox,,.. «(Kx +nB+ N)® J(D) is surjective and hence
Ox(Kx +nB+ N)® J(D) is generated at x. O

Remark 3.9. More generally, if F' is a coherent sheaf on a projec-
tive variety of dimension n and B is very ample such that HP(F ®
Ox(jB)) =0 for anyp >0 and j > 0, then FF ® Ox(nB) is generated
by global sections. To see this, consider the short exact sequence

0—>F'-F—F —0
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where dim Supp(F”) = 0 and F' contains no subsheaves supported at
points. Then F" is generated by global sections and we may apply the
argument of (3.8) to F’.

Definition 3.10. Let X be a smooth variety and V a nonempty lin-
ear series on X (resp. 0 # a C Ox an ideal). Pick f 1Y — X a
log resolution of (X, V) (resp. of (X,a)) i.e. a proper birational mor-
phism f Y — X such that Y is smooth, f*V = V' + F where V'
is a free linear series and F = Fix(f*V), and F + Exc(f) has simple
normal crossings support (resp. a-Oy = Oy (—F) and F +Exc(f) has
simple normal crossings support). For any 0 < ¢ € R, we define the
corresponding multiplier ideal sheaf

J(cV) = f.Oy(Ky/;x—LcF ) (resp. J(c-a) = f,Oy (Ky/x—LcF ).

Proposition 3.11. Let X be a smooth variety and Vy C V4 be nonempty
linear series on X, 0 # a; C as C Ox ideals, then

JVi)cJ(Ve) and  J(a1) C J(az).

If b is the base ideal of a nonempty linear series V and D € V is a
general member and 0 < ¢ < 1 is a real number, then

J(-V)y=T(c-b)=J(c- D).
Proof. Exercise. U

3.1. First geometric applications of multiplier ideals. In this
section we will discuss two geometric applications of multiplier ideals.

Theorem 3.12. Let S be a finite set of points on P and D C P™ be
an hypersurface of degree d such that multID >k forallx € S. Then
there is a hypersurface of degree < L9 o containing S.

Proof. Set G = %A so that mult, G > n for all x € S. Therefore
J(G) C Zs. Since Opn(Kpn) = Opn(—n — 1), we have that
d

Hi(wpr ® Ope () @ J(G)) =0 Vi>0, [ > ?”

Therefore, for [ > Ldn oy 1, we have
H° (wpn @ Opn ) R J(G)) = x(wpr @ Opn (1) @ T (G)) = P(1)

is a polynomial of degree n. So P(l) has at most n zeroes and hence
H (wpn ® Opn (1) @ J(G)) # 0 for some | < L9+ n+1. O

Remark 3.13. Conjecturally, one should be able to produce a hyper-

surface of degree < I_d?n_l — n vanishing along S. It is hard to find

interesting examples for a hypersurface D as above. It is maybe more
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interesting to think of the above theorem as giving necessary conditions
for such a hypersurface to exist.

The next application is due to J. Kollar.

Theorem 3.14. Let (A, ©) be a principally polarized abelian variety (in
particular A is a complex torus, © € Div(X) is ample and h®(O4(0©)) =
1). Then (A,©) is log canonical (i.e. J((1 —€)O) = O4 for any
0<e<k 1)

In particular mult, © < dim A for any point x € A.

Proof. Consider the short exact sequence
0= 040)T((1—-€)0) = 04(0) = O0z(0) =0
where Z = Z(J((1 — €)©)). By (3.7), we have H'(0O4(0) @ J((1 —

€)0)) = 0 so that H°(04(0)) — H°(Oz(0)) is surjective. By (3) and
(1) of (3.5), we have

I, = J((1 - 98) € J(©) = To.

It then follows that H°(Oz(©)) = 0. By semicontinuity, for general
r € A, we have H(Oz(t:©)) = 0 where ¢, denotes translation by

x € A. But then a general translate of © vanishes along Z so that
Z = 0. O

Remark 3.15. The same proof shows that if D € |m®©|, then (A, %D)
is log canonical and hence multz(D) < m(n — k) where Z C X is a
subvariety of dimension k. It is also known that equality holds if and
only if (A,0) = (A',0) x (A",0") where (A’,0’) is the product of
n — k principally polarized elliptic curves.

3.2. Further properties of multiplier ideal sheaves.

Theorem 3.16. Let X be a smooth quasi-projective variety and 0 <
D € Divg(X). If H is a smooth irreducible divisor on X not contained
in the support of D, then

where J(X,D)- Oy :=Im(J(X,D) — Ox — Oy) C Oy.
Moreover, if 0 < s < 1, then for all 0 <t < 1 we have
T(X, D+ (1= 1)H) - On C J(H, (1 - 5)D|).
Proof. Let f 1Y — X be a log resolution of (X, D + H) and write
[*H = H' + > a;E; where H = (f').H, a; > 0 and E; are excep-
tional. We may assume that g = f|g : H — H is a log resolution of

(H, D|g). By adjunction Ky = (Ky + H')|g» and Ky = (Kx + H)| g,
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so that Kyi/g = (Ky)x — Y a;E;)|n. Consider the short exact se-
quence

0 — Oy (Ky/x — f*Da— f*H) = Oy(Kyyx —f*Da— Y a;E;)

— OH/(KH//H + Lf*D’H_I) — 0.
Since —_f*Diy — f*H ~q; {f*D}, we have that R'f.Oy(Ky/;x —
Lf*Dy— f*H) =0 cf. (2.41). Therefore there is a surjection

£ Oy (Kyx—f"Da=> _ a;E;) = g.0w/(Kyryg+f*Dlgs) = J(H, D).
The first assertion now follows as
J(X,D) = f.Oy(Ky/x —f*D2) D f.Oy(Ky/x —of*Da=Y _ a;E;).

To see the second assertion, note that

JX,D+(1-t)H) = f.Oy(Ky;x —of (1 =t)H + D))
and
J(H, (1= s)D|n) = 9:Ow (Knrym — g™ (1 = 8) D))
Therefore, if £ C Y is any divisor on Y with mult grg (K jm — f*(1—
s)D|g)) < —1, then we must show that
mult g (Ky x —f*(1—t)H+D)1) < mult prng (Kprjp—o f*((1=5)D|#)2).
Let k = multg(Ky,x), a = multg(f*H) and d = multg(f*D), then we
must show that
k—c(l—tha+di<k—a—_(1-s)d..

But for 0 <t < %d, the equation is easily seen to hold. 0
Corollary 3.17. [Inversion of adjunction] If J(H,D|g) = O near
a point v € H, then J(X,D) = Ox near v € X. In other words

(H, D|g) is kawamata log terminal near x then (X, D) is kawamata log
terminal near x.

Corollary 3.18. [Inversion of adjunction II] If J(H,(1—s)D|y) C my
for a point x € H and any number 0 < s < 1, then J(X,D + (1 —
t)H) C my, for any 0 <t < 1. In other words, if (H,(1—s)D|g) is not
kawamata log terminal near x then (X, D+ (1 —t)H) is not kawamata
log terminal near x.

Remark 3.19. A more general version of inversion of adjunction is
the following. Let (X,S + B) be a pair such that S is a prime divisor
not contained in the support of B, let v : S — S be the normalization
of S and (S',B') be the log pair defined by the adjunction formula
V' (Kx + S+ B)=Kg + B'. Then
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(1) (X, S+ B) is purely log terminal if and only if (S’, B') is kawa-
mata log terminal, and

(2) (X, S+B) is log canonical if and only if (S’, B') is log canonical.
The implications (X, S + B) is purely log terminal (resp. log canoni-
cal) implies that (S, B") is kawamata log terminal (resp. log canonical)
is easy to see. The implication (S’, B') is kawamata log terminal im-
plies (X, S + B) is purely log terminal follows from the Connectedness
Lemma. The implication (S, B') is log canonical implies (X, S+ B) is
log canonical is a deep result due to Kawakita.

Corollary 3.20. If X is a smooth quasi-projective variety, 0 < D €
Divg(X) and mult,(D) < 1, then

J(X,D), =0, x.

Proof. We proceed by induction on n = dim X. The case n = 1 is clear.
Assume n > 1 and fix x € H C X a smooth divisor not contained in
the support of D. For a general choice of H, we have mult,(D|g) =
mult, (D) < 1. Therefore, J(H, D|y), = Oy p and by (3.17), it follows
that J(X, D), = O, x. O

Proposition 3.21. Let X be a smooth variety, 0 < D € Divg(X) and
Z C X an irreducible subvariety of dimension d such that (X, D) is
log canonical at the general point z of Z and Z is a non Kawamata log
terminal center for (X, D). If B is an effective divisor whose support
does not contain Z and such that

mult,(B|z) > d,
then for any 0 < e < 1, we have
J(X,(1—€)D+ B)Cm,.

Proof. Let f :' Y — X be a log resolution of (X, D), then there is
a divisor £ C Y with center Z such that ag(X,D) = —1. We let
k = multg(Ky,x) so that multg(f*D) = k+1. Since z € Z is general,
we may assume that f|g is smooth over z and we let E, be the fiber
over z. We have

J(X,(1- D+ B) = £.T(Y, (1 - D + B) — Ky/x).
Since multg(B|z) > d, it follows that
multg, (f*((1 —€)D + B) — Ky/x) > d+ 1 = codimy E..

By (3.5), we have J(Y, f*((1 — €)D + B) — Ky/x) C Ig, and the
proposition follows easily. O
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Theorem 3.22. [Subadditivity for multiplier ideal sheaves] Let X be a
smooth variety, 0 < D; € Divg(X). Then

J(D1+ Dy) C J(Dy) - T (D3).
Proof. See [12, 9.5.20]. O

Theorem 3.23. Let w : X — T be a surjective morphism of smooth
varieties. Then
(1) for general t € T we have J (X, D|x,) = J(X, D) - Ox,, and
(2) if dimT =1, Xy is a divisor contained in the fiber over 0 € T
and there is a section g : T — X such that g(0) € X,y and

J (X, Dx,) C my(t) forteT -0
then J(Xo, D|x,) C my()-

Proof. Since the assertion is local, we may assume that X is affine. Let
f Y — X be a log resolution of (X, D), then 7o f is smooth over an
open subset U of T and the simple normal crossings divisor given by
the support of f*D and the exceptional locus of f, meets each fiber Y;
transversely for any ¢t € U. Then

(f*D)lv; = (flv)"(D]x,)  and  Ky/x|y, = Ky, /x,-

Consider now the short exact sequence
0— Oy(Ky/X—Lf*D_I)@IYt — Oy<Ky/X—|_f*DJ> — (’)yz (Ky/X—Lf*D_I) — 0.

Since Y; is obtained by intersecting the pull-backs of dim 7T general
hypersurfaces of T' containing ¢, one can show that R'f,(Oy (Ky,/x —
Lf*D.) ® Iy,) = 0 and hence the homomorphism

J (X, D) = J (X, Dlx,)

is surjective and (1) follows.

For (2), notice that by (1), there is an open subset U of T" such that
over U we have an inclusion J (X, D) C Zyr). Since the zero set of
J(X, D) is closed, the above inclusion holds over 7. By (3.16), we
have

J(Xo,D|x,) C I(X,D)-Ox, C Zy(0)

as required. O

3.3. The theorem of Anhern and Siu. Recall the following.

Conjecture 3.24 (Fujita’s conjecture). Let X be a smooth projective
variety of dimension n and A be an ample line bundle, then Kx + (n+
1)A is generated.
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Remark 3.25. By a result of Kawamata, the conjecture is true in
dimension < 4. It is also conjectured that that Kx + (n+ 2)A is very
ample and that if A2 > 2, then Kx +nA is generated.

While this appears to be a very bold conjecture, there is the following
important result that works in all dimensions.

Theorem 3.26. Let x € X be a point on a smooth projective variety of
dimension n and A be an ample line bundle such that for any subvariety
r € Z C X, we have

n?+n

AdimZ'Z>
( 2

)dimZ.

Then Kx + A is generated at x.

Proof. It suffices to show that there is a divisor D ~g cA such that
¢ < 1 and z is an isolated component of Z(J(D)). By (3.7), it then
follows that the map

HY(Ox(Kx + A)) = H'(Ox(Kx + A)/Ox(Kx + A) ® J(D))
is surjective. The theorem then follows as HY(Ox(Kx + A)/Ox(Kx +
A) ® J(D)) surjects on to H*(Ox(Kx + A)/Ox(Kx + A) @ m,).

In order to construct such a divisor, we will need several intermediate
results.

Lemma 3.27. [Constructing singular divisors] Let x € V' be a smooth
point on an irreducible projective variety of dimension d, 0 < a € Q
and A an ample Cartier divisor on V such that A > a®. Then, for
any k > 0, there exists a divisor Ay € |kA| such that mult,(A) > ka.

Proof. This follows easily as by (1.19), for & > 0 we have
kA4
d!

and the number of conditions required to vanish to order > m at the
smooth point x € V is

d+m—1 md de1

R (Oy(kA)) = + O(k*1)

t

Therefore, we may find a divisor Dy ~g ¢;A with mult, (D) > n

and ¢; < {7 where M = ”2% Therefore (X, D;) is not kawamata log

terminal at x i.e. J(X, Dy), # O, x. Replacing Dy by AD; (where A =

c-(X,0; Dy) is the log canonical threshold) we may assume that (X, D)

is log canonical but not kawamata log terminal at z. Perturbing D,
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by a general element of A, we may assume that (X, D;) has a unique
center of non kawamata log terminal singularities Z; at x.

We now proceed to show by induction on dim Z that for any k > 0
there exists a Q-divisor Dy ~q ¢ A such that

(1) (X, Dy) is log canonical but not kawamata log terminal at x,
(2) (X, Dy) has a unique center of non kawamata log terminal sin-
gularities Z;, # () at x with dim Z, <n — k, and

(3) e < 37 iy (n —i+1).
The case k = 1 has already been established. Assume now that we
have constructed Dj as above. Let g : T — Z; be the normalization
of a general curve containing x. For general ¢ € T the point z =
g(t) € Zy is a general point. By (3.27), there is a divisor G; ~q
gA|z, such that multyy) Gy > dim Z;, and g < % As A is ample, by
(1.19) HY(Ox(mA) ® Iz, ) = 0 for all m > 0 so that H*(Ox(mA)) —
H°(Og,(mA)) is surjective. Therefore, there is a divisor G, ~g gA
such that G}z, = G;. We may assume that there exists 0 < m € Z
such that mG, ~ mA. After replacing T by a finite cover, we may
assume that there is a divisor mG’ ~ pimA € Div(X x T') such that
G, = G'|xx for any t € T — 0 and a section v : T'— X x T such that
7(0) = (x,0), for general t € T', px(y(t)) is a general point of Z; and

multy, (41 (Gilz,) > dim Z.
By (3.22)
T (X, (1 = €)Dy + G}) C mypy (3
for 0 < € < 1 and general t € T. By (3.23), we have that J(X, (1 —
€)Dy + Gf)) C m,. Since Ox(mA) ® I, is generated, we may assume
that the zeroes of
J(X, Dy + Gf))
are contained in Z;. It follows that

J((1—e€)Dy + Gy) C m,

and that the zeroes of J((1 — €)Dy + Gf) are strictly contained in
Zy. After peturbing (1 — €)Dy + Gj, by a general ample divisor and
multiplying it by the log canonical threshold, we obtain a divisor Dy,
with the required properties. O

3.4. Asymptotic multiplier ideal sheaves.

Definition 3.28. Let X be a smooth projective variety, D € Div(X
be a divisor such that k(D) > 0. Then there exists an integers e
e(D) > 0 and mo = mo(D) such that if m > my, then

H°(Ox(mD)) #0 if and only if e divides m.
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The integer e(D) is the exponent of D and the integer mo(D) is the
Iitaka threshold of D.

Exercise 3.29. If D is big, then e(D) = 1.

Lemma 3.30. Let X be a smooth projective variety, D € Div(X) be
a divisor such that h°(Ox(mD)) > 0 for an integer m > 0. Then for
any numbers 0 < c € R and 0 < k € Z, we have

c c
— - |mD|) C J(— - |/mkD)).
I mD) € IS - mkD)
Proof. This is an easy excercise that follows from the inclusion of linear
series klmD| C |kmD|. O

Definition 3.31. Let D € Div(X) be a divisor such that k(D) > 0 and
0 < c € R, then we define the asymptotic multiplier ideal sheaf of
D by

c
Tle- 1Dl = Unerd (5 - pmD))
where I = {m > my(D)|e(D) divides m}. Notice that as X is Noe-

therian, we have J(c-||D||) = J (% - ImD|) for any m > 0 sufficiently
divisible.

One of the reasons for introducing asymptotic multiplier ideal sheaves
is that they satisfy many useful formal properties.

Proposition 3.32. Let L € Div(X) be a divisor such that k(L) > 0,
0<m,l€Z and 0 < c € R, then

(1) T(e-|lmLl) = T (em - ||L]]),

(2) J(c-|[m+1)LJ[) € T(e- [[mL]]),

(3) b - I([mLl]) < T (||(m + 1) L]]),

(4) H(Ox(mL) ® J(||mLl)) = H(Ox(mL)), and

(5) T(c-|ImL|) = T (55 - |D|) where D € |mpL| is general.

Proof. We may pick p > 0 such that J(c-||mL||) = J (< - |mpL|) and
J(em - [|L|[) = T (2 - [pmL]). (1) follows immediately.

By (1) and (3.5), we have that
J(e-[mLl|) = T (em-[|L][) > T (c(m+1)-||L][) = T (c-[[(m+1)L]]).

Hence (2).

To see (3), consider f : Y — X a log resolution of (X, |tL|) for
t € {l,pm,pl,p(m+1)}. We write f*|tL| = V;+ F; where V} is free and
F, = Fix(f*|tL|). If p > 0 is sufficiently divisible, we have

pE+FmpZFpl+Fmp2Fp(m+l)a
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so that | |
—F — ;_FmpJ < —L;Fp(m+l)4.

It follows that

1
bi- J(|lmL|]) C f.Oy(Ky)x — F; — ;I- mp)

1
C f*OY(KY/X - LZ_? p(m+l)J) = .7(H(m + l)LH)

(4) follows as by (3), we have b,, C J(||mL]||).

To see (5), consider a log resolution f : Y — X of (X, |mpL|) for
any p > 0 sufficiently divisible. Then f*|mpL| = V,,,, + Fy,, where
Fop = Fix(f*|mpL|). But then f*D = D’ + F,,, where D’ is a smooth
divisor, and 50 Ly (D' + Fyyp) s = L Frnpo and the assertion follows
easily. 0

Theorem 3.33 (Subadditivity for asymptotic multiplier ideal sheaves.).
Let L € Div(X) be a divisor such that k(L) > 0, 0 < m,l € Z and
0 <ceR, then

JI(c-|lm+DL[|) € J(c-[lmL]]) - T (c- [[IL]])-
In particular J(c - ||/mL||) € J(c- ||L||)™.

Proof. Let p > 0 be sufficiently divisible and D € |mi(m + l)pL| be
general. Then

O N )
Fle-Wm+ L) = T (D) = T3 mr2sD) ©
cm cl
T Gtptm ) Gatptm ) = T e Im) - e KL

O

Remark 3.34. Note that we have used (3.22) which states that if 0 <
D; € Div(X), then J(Dy + D3) C J(D1) - J(Ds). However, it is not
the case that J(|Dy + Ds|) C J(|D1]|) - T(|D2|) (eg. let D; be general
points on an elliptic curve E, then J(|D;]) = J(D;) = Og(—D;) but
|Dy + Do is free so that J(|Dy + Ds|) = Og).

The following result is due to Wilson.

Proposition 3.35. Let D € Div(X) be nef and big divisor on a smooth
projective variety. Then there exists an integer mg > 0 and a divisor
N € Div(X) such that |/mD — N| is free for all m > mg. In partic-
ular if x € X and G € |mD)| is general, then mult, G is bounded (by
mult,(N)).
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Proof. Let H € Div(X) be sufficiently ample. Since D is big, there is
an integer mg > 0 such that (n 4+ 1)H + N ~ mD for some 0 < N €
Div(X). For any mg < m € Z, we have

mD — N =(m—my)D+ (n+1)H.
By (3.8), mD — N is free. O

Proposition 3.36. Let D € Div(X) be a big divisor on a smooth
projective variety. Then D is nef if and only if J(||mD||) = Ox for
allm > 1.
Proof. Assume that D is nef. Fix any m > 1. We have
1 1
F(ImDIl) = T (+ - kD) = T (1 Dy)

where k£ > 0 is sufficiently divisible and Dy, is general in |mkD|. By
(3.35), we may assume that mult,(+D;) < 1 for all z € X so that
J(+Dy) = Ox.

Assume now that J(||mD||) = Ox for all m > 1. Fix B a very
ample divisor. By (3.8)

Ox(Kx + (n+1)B+mD)® J(|/mD||) = Ox(Kx + (n+1)B+mD)
is generated by global sections. If C' C X is any curve, then D - C' >
—L(Kx + (n+1)B)-C. As

1
lim (Kx+(n+1)B)-C =0,

m—+00 m

it follows that D - C > 0 and so D is nef. O

The next application concerns the diminished stable base locus of a
pseudo-effective divisor D € Div(X') which is defined by

where A is any fixed divisor.
Exercise 3.37. Show that the above definition is independent of A.

Exercise 3.38. Show that if 0 < €1 < €5 € Q then SBs(D + e, A) C
SBs(D +¢€,A) so that B_(D) is a countable union of subvarieties of X .

Proposition 3.39. Let D € Div(X) be a pseudoeffective divisor on a
smooth projective variety and Z C X be a subvariety. If

1
lim — multz(|m!D]) = 0,
m!

then Z is not contained in B_(D).
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Proof. If A € Div(X) is ample and m is sufficiently large, then by (3.8),
Ox(m(D + A)) @ J(|]l/mD||) is generated by global sections. Notice
that J(||mD]|) = J(:D,) where D, € |mpD]| is general and p > 0 is

p
sufficiently divisible. Since p is sufficiently divisible, then 110 mult; D, <

1 and so Iy ¢ J(|/mD]|). O
3.5. Adjoint ideal sheaves.

Definition 3.40. Let (X, D) be a log smooth pair where D is a reduced
divisor, 0 < ¢ € R and let V be a linear system whose base locus
contains no log canonical centers of (X, D). For any log resolution
f:Y = X of (X, D+|V|), we write f*D = M+F where F' = Fix(f*V)
and M s free.
We define the multiplier ideal sheaf
jD,oV = f*Oy(Ey(X, D) - I_CFJ).

If B = ¢G where 0 < G € Div(X), then we define Jpp = JIpcv
where V = {G}.

Lemma 3.41. The above definition is independent of the log resolution
f:Yy—X.

Proof. Given two log resolutions of (X, D + |V|), f : Y — X and
f' Y — X we may assume that f' = fov where v: Y’ — Y. Then
v*M is free and v*F = Fix(v*f*V). We let By = Ey/(X,D) and
similarly for Y and I". We have
= Fyr —c*F = Ky + Ty: — f*(Kx + D) — av*F
= Ky + Ty —V*(Ky+ry—Ey+CF)
= I/*(E - I_CF_I) + Ky/ + Fy/ - I/*(Ky + FY + {CF})
One sees that (Y,T'y + {cF'}) is log canonical and its log canonical
places coincide with those of (Y, T'y) and hence with those of (X, D).
It follows that the divisor
G = '_Ky/ + Fy/ — V*(Ky + Fy + {CF})—l
is effective and v exceptional. Therefore
inY/C—Ey/ - CV*F—|> = f*<V*Oy/<|—EY/ - CI/*F—l)
= f*(V*Oyl(V*('—EY - CFj) + G) = f*(Oy(rEy - CF—l)).
O

Lemma 3.42. Let (X, D) be a log smooth pair where D is a reduced
divisor, 0 < ¢ € R and let V (resp. 0 < G, H € Divg(X)) be a linear
system whose base locus (resp. a divisors whose support) contains no

log canonical centers of (X, D). Then
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(1) Ip.c = Ox if and only if (X, D+G) is divisorially log terminal
and D+ GL=LD..

(2) If 0 < D' < D and D' is a reduced divisor, then Jp.v C
jD’,c-V-

3) If 0 < ¥ e Div(X), H < G+ X and Jpc = Ox then Iy C
Ip.H-

Proof. (1) and (2) follow easily from the definitions.
To see (3), let f: Y — X be a log resolution of (X, D+ G+ H +¥).
As ¥ € Div(X), we have
LfFHO < Lf*"Ga+ f*X.
As Jp.¢ = Oy, it follows that
Ey(X,D) — Lf*Gs> 0.
Therefore, we have that
— U< f Go—ffHi=(Lf"Ga—Ey)+(Ey—_f"Hy) < Ey—_f"H ..
Therefore

Iz = f.Oy(—=f"%) C fL.Oy(Ey — | f"H]) = Ip.u-
]

Theorem 3.43. [Nadel Vanishing for adjoint ideals] Let m : X — Z be
a projective morphism to a normal affine variety. Assume that (X, D)
is a log smooth pair where D is reduced and 0 < G € Divg(X) is a
divisor whose support contains no centers of NKLT(X, D).

If N € Div(X) and N — G is ample, then

Rm.Jpc(Kx +D+N)=0 Vi>D0.

Proof. Let f:Y — X be a log resolution of (X, D + G). By [14] we
may assume that f is an isomorphism at a general point of each log
canonical center of (X, D). We have

[f(Kx+D+N)+FE—_f"Go=Ky+T+{f*G}+ f*(N - G)

where £ = Ey(X,D) and I' = T'y(X, D). By (2.43), we have that
R f.Oy(Ky +T + {f*G} + f*(N — G)) = 0 for i > 0 and R'(w o
Oy (Ky + T +{f*G}+ f*(N —G)) = 0 for i > 0. Since f.Oy(Ky +
I'+{f*'G}+ f*(N—-QG)) = Ipc(Kx+ D+ N), the claim follows from
an easy spectral sequence argument. U

Lemma 3.44. Let 7 : X — Z be a projective morphism to a normal
affine variety. Assume that (X, D) is a log smooth pair where D is

reduced, S is a component of D and G € Divg(X) is effective and its
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support contains no centers of NKLT(X, D). Then there is a short
exact sequence
0 — JIp-s.a+s — Ip,cg = Tp-s)s,qls — 0.
If moreover, N € Div(X) and N — G — (Kx + D) is ample, then the
homomorphism
m.JIpa(N) = mJp-s)s.61s(N)

1S surjective.

Proof. Let f :Y — X be a log resolution of (X, D + G). By [14] we
may assume that f is an isomorphism at a general point of each log

canonical center of (X, D). Let T = (f7'),S and consider the short
exact sequence

0= Oy(E—Lf"Gi—T) = Oy(E—Lf"Gl) = Or(E—Lf"G1) =0
where E = Ey (X, D). Let I' =Ty (X, D). Since
E-fG-T=(Ky+T-T)—f(Kx+D—-S+(G+59)),

we have

E—-f"G-T=EFEy(X,D—-5)—f(G+Y9)
and

(B =[Gy =Kr+ I =T)lr— [(Ks+(D—5+G)s)
= Er(5,(D = 5)|s) — f7(Gls).
Since "E — f*G —T"~; Ky + ' =T + {f*G}, by (2.43)
R'f.Oy(TE — f*G—T7) = 0.

Therefore, pushing forward the above exact sequence via f, we ob-

tain the required short exact sequence. The surjection m.Jpac —
. J(D-9)|s,¢|s Tollows by (2.43) as

PN+TE— f*G—T"~
(Ky +T =T)+ f*(N - Kx — D - G) + {f*G}.

Exercise 3.45. Use (3.44) to reprove (3.41).

The next result is sometimes referred to as the process of “squeezing
out the extra positivity”. Roughly speaking it says that under appro-
priate hypothesis, if N is the multiple of an adjoint bundle, S C X is a
divisor and H is an ample line bundle, such that sections of (mN+H)|s

extend for m > 0, then sections of N|g also extend.
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Theorem 3.46. Let w: X — Z be a projective morphism to a normal
affine variety. Assume that (X, D = S+ A+ B) is a log pair where
LDy =S, X and S are smooth and 0 < A, B € Divg(X). Let 0 <
keZ, C=1Aand0< P <Q=(D—095)|g be a Q-divisor such that
k(Ks+ @) and k(Kx + D) are integral.

If there is an integer m > 1 divisible by k and a divisor 0 < P €
Div(X) such that C — %P is ample, mC' € Div(X), the pair (X, D +
%P) 15 purely log terminal and

%WKﬁ4m+m@—®+ﬂ@+PbCm%&+D+@+Pm

then
|k(Ks + ®)| + k(2 —®) C |[k(Kx + D)|s.

Proof. Pick any divisor ¥ € |k(Kg + )|, then there exists a divisor
G € |m(Kx+D+C)+P|  with Gb::%Z+WKQ—®+CbHJﬂS

We define
k—1
A:TG+B and N=k(Kx+D)—Kx—S5.

Since A > 0, S ¢ Supp(A) and N — A ~g C' — %P is ample, then by
(3.7), the homomorphism
HO<X, Ox(l{?(KX -+ D))) — HO(S, Os(k(Ks + Q)) & jf\\s)

is surjective. It suffices then to check that >+ k(€2 + @) vanishes along
the ideal Jy,. This follows by (3.42) since (S,Q + :=1P|g) is klt (as
(X, D + %P) is purely log terminal) and

Als = (2 +K(Q - @)

= S (@ — @+ Cls) + Pls) + Bls — (S + k(- ©))

m k

k—1
<o+ P
m

3.6. Asymptotic multiplier ideal sheaves II.

Definition 3.47. Let X be a normal variety and D € Div(X). An
additive sequence of linear systems associated to D is a sequence
of sublinear series V; C |iD| such that
Vit V; CVigy.
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Definition 3.48. Suppose that (X, D) is a log smooth pair and D is
reduced. If Vs is an additive sequence of linear systems (associated to
a divisor G) such that for some 0 < m € 7Z no non kawamata log
terminal center of (X, D) is contained in Bs(V,,) then we define the
asymtotic multiplier ideal sheaf of ¢ -V, with respect to (X, D) by

IDcve = Up>ojD,§~Vp-
If Vi, = ImG|, we let
Ip.cla) = Ipeva
and if S is a component of D and W,,, = |mD|g we let
T(0-8)s.c1Glls = T(D-8)|s.cWe
Exercise 3.49. Show that if q¢ divides p and m divides q, then
..7D,§-Vp D jD,g-Vq
and therefore,
IDcve = jD,gvp

for any p > 0 sufficiently divisible.
Exercise 3.50. Show that u7(DfS')|5,c-HGHs C \7(D*S)|S7C-I|G|s||'
We will need the following preliminary results.

Lemma 3.51. Let m : X — Z be a projective morphism to a normal
affine variety and G € Divg(X). If (X, D) is a log smooth pair, D is
reduced and SBs(G) does not contain any non kawamata log terminal
center of (X, D), then

(1) for any 0 < ¢1 < ¢z € R, we have
Ip.esicll € Ip.erial]
(2) if G € Div(X) and S is a component of D, then
Im (7.0x(G) = Os(G)) C mJ(p-s)s,liclls (G)-

Proof. (1) follows easily from the definitions.
To see (2), let 0 < p € Z such that

Tp-9)ls, L cls = J(D-9)ls.lIClls

and consider f : Y — X a log resolution of |G|+ D and of [pG|+ D.
Let T = (f71).S. We let F; = Fix(f*|iG|). Then by definition of F1,
we have

(mo [0y (fG—F) = W*OX(G?))E)Z (0 [):Oy(Ey(X, D)+ [*G).



We also have inequalities
G —-F < f*G — L%FPJ < Ey + f*G — L%F,,J < Ey + f*G.
Pushing forward, one sees that
1.0x(G) = (10 .0y (By + G — L%FPJ)
and so the image of m.0Ox(G) is contained in

. 1
(mo [).Or(By + f*G — L];FpJ) = TJ(D-5)sG|Is (G)-
0

Lemma 3.52. Let 7 : X — Z be a projective morphism to a normal
affine variety and G € Divg(X). If (X, D) is a log smooth pair, D
is reduced, S is a component of D and B (G)' contains no centers of
NKLT(X, D), then for any p € N sufficiently divisible and B € |pG)|
general, we have

Rm.Jp_sipes(Kx +D+G)=0 for i > 0, and

T J(D-5)s,1cls (Ks + (D = S)|s + Gls) C
Im (W*OX(KX + D + G) — W*OS(KS + (D — S)|S + G|s)) .

Proof. If 0 < p € Z is sufficiently divisible and B € |pG| is general,
then

Ipjall = Ippe = Ipip  and
Jo-9)sliclls = Tp-8)is,1p61s = J(D-5)ls,1Bls-
By (3.44), we have a short exact sequence
0= Ip-siprs = Ipip = Jp-sysins = 0

Let f : Y — X be a log resolution of (X, D + [pG|) which is an
isomorphism at a general point of each center of NKLT (X, D), then
(as in the proof of (3.44))

1
jD—S,%B+S = [.Oy(Ey(X,D) =T — L;f*BJ)'

Notice that if M = f*|pG| — Fix(f*|pG|), then {%f*B} > %M and %M
is nef and its restriction to any center in NKLT(Y,T'y) is big (we may

'Recall that B, (G) = Ne0SBs(G — €A) = SBs(G — € A) for any 0 < ¢ < 1.
40



in fact assume that M ~g f*A + E where A € Divg(X) is ample and
E > 0 contains no centers of (Y, 'y (X, D))). Since

1
Ey(X,D)—-T — Lgf*B_J—f—f*(KX + D +G)

1 1
~o Ky + Ty (X, D) =T+ f*(G — ]—?B) + {];f*B},
by (2.43), we have that for any ¢ > 0
Riﬂ—*jD—S,%B-&-S(KX +D+G) =

Ri(f om).0y(By(X,D) — T — L%f*BJ + P (Ex+D+G)) =0.
0

4. EXTENSION THEOREMS AND APPLICATIONS

Theorem 4.1. Let 7 : X — Z be a projective morphism to a normal
affine variety. Let (X, D = S + B) be a log smooth log canonical pair
of dimension n, 0 < k € Z such that k(Kx + D) € Div(X) and S
an irreducible component of LD .. If the stable base locus of Kx + D
contains no centers in NKLT(X,"D™) and A is any sufficiently ample
divisor on X then

bmn  Jmk(kx+D)|sll C J([D1-9)\s,|Imk(Kx+D)+A||s

holds for all m € N, and 7, Jjjmr(k x+D)|s|| (ME(Kx + D) + A) is con-
tained in the image of the homomorphism

Proof. We begin by proving the first statement by induction on m > 0.
The case m = 0 is clear. We will show that f,,, implies #,,,1. Write
D =>"d;D; and for 1 < s <k let

S<D'<D*<...<DF=TD"
be the (uniquely defined) reduced divisors such that

k
kD =Y "D*.
s=1
Let Ny € Div(X) be the divisors defined by Ny = 0 and
Nyo1 = Kx + D'+ N, for0<s<k-—1.
In particular N, = k(Kx + D). We will show that there are inclusions

*s  Jmk(kx+D)|sl| C T(Ds+1-8)|s,[|mk(Kx+D)+No+Alls ~ Tor0 < s <k.
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fma1 then follows since by (3.32), we have

Jlm+Dk(Ex+D)|sll © T|jmbk(Kx+D)ls|l-

%o follows since by f,, and by (3.42), we have

Jimk(x+D)|s|| C J(D1-5)|s,imk(Kx+D)+Alls C T(D1-8)|s.|[mk(Kx+D)+Alls-

Suppose now that %;_; holds. We have
7T*u7||mk(KX+D)|S|\(mk<KX + D)+ N, + A)

C TT(Dt—8) |5, |Imk(Kx + D)+ N1 +Al|s (ME(Kx + D) + Ny + A)
C Im (m.Ox(mk(Kx + D) + Ny + A) —» m.0Os(mk(Kx + D) + N; + A))

C ﬂ-*u7(Dt+1—S)|S,||mk(KX+D)+Nt+A||S(mk(KX + D) + N; + A)
The first inclusion follows by x;_1, the second inclusion follows from
(3.52) and the third one from (3.51). By (3.8), Jjjmr(k x+D)|s|| (ME(Kx+
D)+ N, + A) is generated by global sections and so

Tlmk(kx+D)|sll © T(DH1-8)\s,|jmbk(K x+D)+Ni+Al|s

This completes the proof. O

Theorem 4.2. Let w: X — Z be a projective morphism to a normal
affine variety. Let (X, D = S+ A+ B) be a purely log terminal pair of
dimension n where X and S are smooth, D € Divg(X), LDy= S5, A
is a general ample Q-divisor, (S, = (D — S)|g) is canonical and the
stable base locus of Kx + D does not contain S. For any sufficiently
divisible m > 0, let

F,, = Fix(I]m(Kx + D)|s)/m

and F =1im F,,,.
If0 < e € Q is such that e(Kx + D)+ A is ample, ® € Divg(S) and
0 < k € Z such that
(1) kD € Div(X) and k® € Div(S), and
(2) QAN <O < Q where A =1—¢/k,
then
|k(Kg +Q— @)+ k® C |k(Kx + D)|s.

Proof. Pick a general ample divisor C' ~q A/k so that (X, D+(k—1)C)
is purely log terminal and (5, + Cg) is canonical. Pick e/k <n € Q
so that n(Kx + D) + C is ample. If 0 < [ € Z is sufficiently divisible
so that O = [(n(Kx + D) + C) is very ample, then

Fix(l((Kx + D + C)|s)/l = Fix(|l(1 = n)(Kx + D) + Ols)/l

< Fix([{(1 —n)(Kx + g)|s)/l = (L =n)Fa-n-



Therefore
lim Fix(|I(Kx + D + C)|s)/I! < (1 —n)F.

By (3.39), if P is a prime divisor on S that is not contained in the
Supp(F), then for [ sufficiently divisible, P is not contained in Bs({(K x+
D + ()). It follows that we may pick 0 < [ € Z sufficiently divisible
such that

Fix(|I(Kx + D+ C)|s)/l < AF.

Let f : Y — X bealogresolution of (X, |[(Kx+D+C)|+Supp(D+C))
and write
Ky +T=f(Kx+D+C)+E
where I' = I'y (X, D + C) and E = Ey(X, D + C). We have that
Fix((Ky + 1))/l =Fix(lf*(Kx + D+ C))/l + E.
If ==T—-TAFix({(Ky + 1)) /I, then
I(Ky + =) € Div(Y) and Fix(I(Ky +2) ANZ =
Since Mov((Ky + 2)) is free and Fix({(Ky +Z)) + = has simple normal
crossings support, it follows that SBs(Ky + Z) contains no centers
of NKLT(Y,"=7). Let H € Div(Y) be an ample divisor and pick
0 <m,l,q € Z such that [ divides m and ) = ¢H is sufficiently ample.
We let T = (f1).S, T'r = (' = T)|r and ZEr = (£ — T)|y. For any
section
7 € H(Or(m(Er + Zr))) = H(Jjpu(rr+z0) (m(Er + 1)),
and any section 0 € H°(Or(Q)), we have that
o-TE Ho(ﬂ\m(KTJFET)H(m(KT +Er) + Q).
By (4.1), o - 7 is in the image of
Therefore, we have that
im(Kr + Zr)| +ml'r — Z7) +[Q|7| C [m(Ky +T) + Q|r.
Notice that if ¢ = f|r, then g.I'r = Q + C|g. Since g.Zr < , we
have that (S, g.=7) is canonical and it follows that |m(Kg + ¢.=7)| =
g«|m(Kr + Er)|. Pushing forward the above inclusion via f, one sees
that
Im(Ks + g.=7)| + m(Q+Cls — g.Z1) + Pls C [m(Kx + D+ C)+ P|s
where P = f,(). For any prime divisor R on S we have

multg Fix(|l(Kx + D + C)|s) = multg Fix(|{(Ky + T')|7)
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where R’ = (g7'),R. Therefore
0.5 —Cls = Q- QAFix(I(Kx + D+ C)[s)/l = Q— QANF > Q — D,

and so
Im(Ks+Q— @) +m® + (mC + P)|s C |m(Kx + D) +mC + P|s.
The result now follows from (3.46). O

4.1. Deformation invariance of plurigenera. Let f: X — Z be a
smooth projective morphism from a smooth variety to an affine smmoth
curve. Y.-T. Siu has shown that the plurigenera

P (X.) = h%(X., Ox,(mKx.))

are deformation invariant (do not depend on z € Z). We will now give
a proof of this beautiful result for the case of fibers of general type.

Theorem 4.3. Let A be a sufficiently ample divisor on X. If k(Kx.) >
0 for general z € Z, then h°(X., Ox.(mKx. + Alx.)) does not depend
onz € 4.

Proof. The function h°(X,, Ox,(mKx. + A|x.)) is upper semicontinu-
ous (cf. [5, I11.12.8]). Fix zq € Z, we must show that h°(X,, Ox.(mKx_ +
Alx,)) = h(X,,, Ox, (mKx, +Alx,, )) this is equivalent to proving that
f+Ox(mKx+ A) is locally free (on a neighborhood of zy € Z) or equiv-
alently that

[:Ox(mKx+A) - H(X.,Ox.(mKx_ +A|x.)) = [.Ox.(mKx +A|x.)

is surjective (cf. [5, II1.12.9]). Since Z is affine, this is equivalent to
showing that H*(X, Ox(mKx + A) — H°(X,,Ox.(mKx, + Alx.)) is
surjective.

We now apply (4.1) with S = X,,, B =0, £k = 1. We must check
that the stable base locus of Kx + S does not contain S. Note that
S ~ 0 and hence it suffices to show that H°(X, (IKx)) # 0 for some
[ > 0. Since Z is affine, it is easy to see that this is equivalent to
showing that f,(IKx) # 0 i.e. that h%(X,, Ox.(IKx.)) # 0 for general
z € Z. But this is clear from the assumption that x(Kx.) > 0. O

Theorem 4.4. If X is of general type for general z € Z, then h°(X., Ox,(mKx,))
does not depend on z € Z for any m > 0.

Proof. The proof follows from (4.2), however we will give an elemen-
tary proof (using the techniques introduced above). We may assume
that m > 2 (the case m = 0 is trivial and m = 1 is well known

and follows from Hodge Theory: h°(X,,Cy.) is constant and given by
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oo (X, Q% ") where n = dim X.. Since each h*(X., Q% ") is upper
semicontinuous, it must in fact be constant.)

Fix 0 € HY(X,,Ox.(mKx.)) with zero divisor ¥. We must show
that o extends to X.

By (4.3), there is an ample line bundle A such that H(X, Ox (1Kx+
A) = HY(X,,Ox. (IKx. + Alx.)) is surjective for all [ > 0. For any
[ = km, pick D, € |IKx + A| so that Dj|x, = k¥ + Alx,. Since X, is of
general type and Z is affine, it follows that Ky is of general type and
hence we may write Kx ~g E + €A where € > 0, and £ > 0. Define
©=m129pD 4 §eF for 0 < § < 1, then

km

m—1—9
km

is ample (for k > 0) and so by (3.43), H*(X., Ox,(mKx.)®J(X.,0|x.))

is contained in the image of the restriction map

HY(X,Ox(mKx)) — H(X,, Ox.(mKx.)).

Thus it suffices to check that o0 € H*(X,, Ox,(mKx.) ® J(X.,0]x.))
i.e. that o vanishes along (the scheme defined by) J(X,,0|x.)). Since

(m—1)Kx — (X, +0) ~g (J¢ — )A

_1-4
Oly. -2 < "7 Al + 5eEx.
km

and (X, ™20 A|x. + 0eE|x,) is klt, the claim follows from (3) of

km

(3.42). O

Exercise 4.5. Show that if X, is of general type and Z is affine, then
X is of general type.

5. PL-FLIPS

In this section we will prove the existence of pl-flips.

5.1. pl-flips and the restricted algebra.

Definition 5.1. Let (X, D) be a purely log terminal pair and f : X —
Z be a projective morphism of normal varieties, then f is a pl-flipping
contraction if

(1) X is Q-factorial,
(2) D € Divg(X),
(3) f is small (i.e. dimEx(f) <dim X —2) and p(X/Z) =1,
(4) —(Kx + D) is f-ample, and
(5) S =1LD. is irreducible and —S is f-ample.
45
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The flip of a pl-flipping contraction if it exists is defined by
fr:XT=Proj,R—2Z  where R=@P fOx(m(Kx+ D))

meN
Remark 5.2. Note the following:

(1) The flip exists if and only if it exists locally over Z. We may
therefore assume that Z = SpecA.
(2) Assuming that Z = SpecA then the flip exists if and only if

R(Kx + D) = @ H(Ox(m(Kx + D)))
meN
s a finitely generated A-algebra.

(3) It immediately follows that f* : XT — Z is also a small bi-
rational morphism with p(X*/Z) = 1, X is Q-factorial and
Kx+ + DT is ft-ample where D* = ¢,D and ¢ = (fF) Lo f:
X --» Xt ¢ restricts to an isomorphism over Z — f(Ex(f)).

(4) It is easy to see that if in the above definition D € Divg(X)
instead of D € Divg(X), then one can choose D' € Divg(X)
sufficiently close to D such that f : X — Z is a pl-flipping
contraction with respect to (X, D). Similarly if .Dy = S1 +

..+ S, with r > 1, then there exists S = S; such that —S is
f-ample. Replacing D by D —e(LD1— S) we may assume that
LD is wrreducible.

Shokurov noticed that in order to prove the existence of flips, it
suffices to prove the existence of pl-flips.

Definition 5.3. If f : X — Z s a pl-flipping contraction and Z 1is
affine, then we define the restricted algebra
Rs(Kx + D) =Im(R(X,Kx + D) = R(S, Ks + Q))
where Q0 € Divg(S) is defined by (Kx + D)|s = Kg + Q. Its m-th
graded piece corresponds to the image of the homomorphism
H(Ox(m(Kx + D))) = H°(Os(m(Kgs + ))).

In order to prove that R(X, Kx + D) is finitely generated, Shokurov
observed that it suffices to show that the restricted algebra Rgs(K x+ D)
is finitely generated. We start by recalling the following well known
result.

Lemma 5.4. Let R be a graded algebra which is an integral domain
and let 0 < d € Z. Then R is a finitely generated algebra if and only if

the algebra
=D R

meN
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s a finitely generated algebra.

Proof. If R is finitely generated, then finite generation of R follows
since R is the ring of invariants of R with respect to the obvious Z,
action on R and since by a theorem of E. Noether, the ring of invariants
of a finitely generated ring under the action of a finite group is finitely
generated.

Assume now that R is finitely generated. Notice that if f € R;,
then f is a root of the monic polynomial ¢ — f¢ € R4 [z] and hence R
is integral over R(4y. Finite generation of R now follows by E. Noether’s
theorem on the finiteness of integral closures. U

Proposition 5.5. If S is a normal prime divisor and B € WDiv(X)
15 integral Weil and Q-Cartier and its support does not contain S, then

(1) If R(X, B) is finitely generated, then so is
Rs(X, B) := Im(¢ : R(X, B) — R(S, Bls)).
(2) If S ~ B and Rs(X, B) is finitely generated then so is R(X, B).

Proof. (1) is clear. Assume now that Rg(X, B) is finitely generated
and S ~ B so that S — B = (g;) for some rational function ¢; on X.
We may identify R(X, B),, with the set of rational functions g on X
such that (g) + mB > 0. Now if g € ker(¢), then (¢g) + mB =S+ 5’
where S’ > 0. Then

(9/91) +(m—1)B =5

so that g/¢1 € R(X, B),,—1. In other words the kernel of ¢ is generated
by g1 and the result follows. 0

Theorem 5.6. Let f : X — Z be a pl-flipping contraction with respect
to (X,D) and 0 < k € Z such that k(Kx + D) € Div(X). If Z =
Spec(A), then the flip f+: XT — Z exists if and only if the restricted
algebra Rs(Kx + D) is finitely generated.

Proof. By (5.2), the flip f*: X — Z exists if and only if R(Kx + D)
is finitely generated. Since there are positive integers a and b such
that a(Kx + D) ~ bS (cf. (6.11)), by (5.4), R(X, Kx + D) is finitely
generated if and only if R(X,S) is finitely generated. Let S’ ~ S be a
divisor in WDiv(X) whose support does not contain S (this exists as
X — Zissmall and 7 is affine). By (5.5) R(X,S’) is finitely generated
if and only if Rg(X,S’) is finitely generated. By (5.4), Rs(X,S’) is
finitely generated if and only if Rg(k(K x+D)) is finitely generated. [
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5.2. Zariski decomposition and pl-flips. In order to prove the ex-
istence of pl-flips in dimension n, we will need to assume that we have
constructed log terminal models in dimension n — 1. Recall the follow-
ing.

Definition 5.7. Let (X, D) be a log canonical pair, Z be an affine
variety and f : X --+»Y be a birational map over Z that extracts no
divisor, then f: X --» Y is a log terminal model of (X, D) if

(1) f: X --»Y eatracts no divisor (i.e. f~' contracts no divisors),

(2) Y is Q-factorial,

(3) (Y, fuD) is divisorially log terminal,

(4) for any prime divisor E on X contracted by f, we have ag(X, D)

ap(Y, f.D), and
(5) Ky + f«D is nef over Z.

Remark 5.8. If f consists of a sequence of flips and divisorial con-
tractions, then (1) and (4) follow. If moreover, X is Q-factorial and
(X, D) is divisorially log terminal, then (2) and (3) also follow.

Theorem 5.9. Let m: X — Z be a projective morphism to a normal
affine variety, (X,D = A+ B) be a kawamata log terminal pair of
dimension n, where A > 0 is an ample Q-divisor and B > 0. Then

(1) The pair (X, D) has a log terminal model pu: X --» Y. In
particular if Kx + D is Q-Cartier then the log canonical ring

R(X,Kx + D) = @ H(X,Ox(um(Kx + D)J)),
meN
18 finitely generated.

(2) LetV C Divg(X) be the vector space spanned by the components
of D. Then there is a constant 0 > 0 such that if G is a prime
divisor contained in the stable base locus of Kx +D and = € V
such that | — D|| < 9§, then G is contained in the stable base
locus of Kx + Z.

(3) Let W C V be the smallest rational affine space containing D.
Then there is a constant 7 > 0 and a positive integer r > 0
such that of =2 € W is any divisor and k is any positive integer
such that |2 — D|| < n and k(Kx +Z)/r is Cartier, then every
component of Fix(k(Kx +Z)) is a component of the diminished
stable base locus of Kx + D.

In this section we will prove
Theorem 5.10. (5.9),,_; implies that pl-flips exist in dimension n.

We begin by proving the following:
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Theorem 5.11. Assume (5.9) in dimensionn — 1. Let w : X — Z
be a projective morphism to a normal affine variety. Let (X,D =
S+ A+ B) be a purely log terminal pair of dimension n where X and
S are smooth, D € Divg(X), .DJ =S, A is a general ample divisor,
(S,Q = (D — 9)|s) is canonical and the stable base locus of Kx + D
does not contain S. For any sufficiently divisible 0 < m € 7Z, let

F,, = Fix(Im(Kx + D)|s)/m

and F =1im F,,,.
Then © = Q — QA F is rational. In particular if kD € Div(X) and
k© € Div(S), then

[k(Ks +0©)| + k(Q = ©) = [k(Kx + D)ls,

and
Re(X,k(Kx + D)) = R(S, k(Ks + ©0)).

Proof. Suppose that © ¢ Divg(S). Let V' C Divg(S) be the vector
space spanned by the components of ©. There is a constant 6 > 0 such
that if ® € V and ||® — ©]| <, then
(1) >0,
(2) Supp(®) = Supp(©) and
(3) any prime divisor contained in the stable base locus of K¢+ ©
is also contained in the stable base locus of Kg + .

Notice that if [(Ky + A) is Cartier and ©; = Q — Q A F;, then
I(Kx 4 A)|s C [[(Kg+0)| +I(QAF).

It follows that Fix(I(Ks + ©;)) does not contain any component of ©;.
Therefore
SBs(Kgs + ©;) A Supp(6;) = 0.

But for any 6 > 0 we may choose [ > 0 sufficiently divisible so that
©, € V and ||©; — ©|| < 0. Therefore

SBs(Ks+ ©) A Supp(©) = 0.

We now consider W C V' the smallest rational affine vector space
containing ©. By assumption dim W > 0. By (3) of (5.9), there are
a positive integer r > 0 and a constant 0 < n € R such that for any
¢ € W with k®/r € Div(S) and ||® — ©|| < n then

Fix(k(Ks + ®)) C SBs(Ks + ©).

We now pick 0 < € € Q such that e(Kx + D) + A is ample. By
Diophantine approximation, we may find a positive integer k, ® €
Divg(S) and a component G of Supp(©) (whose coefficient in © is

irrational) such that
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(H)o<deW,

(2) k®/r € Div(S) and kD/r € Div(X),

(3) ||® — ©|| < min{d,n, fe/k} where f is the smallest non-zero
coefficient of F', and

(4) multg & > multg ©.

One sees that since ||® — O] < fe/k, then we have
OANF<Q—d<Q
where A = 1 —¢/k. By (2) and (4.2) we have that
|k(Ks + @)+ k(2 — D) C [k(Kx + A)ls.

But by (4) G is a component of Fix(k(Kg+®)). Since ||2—0O|| < n, (2)
implies that G is a component of SBs(Kg+©). This is a contradiction.
It follows that © is rational. The remaining assertions follow from
(4.2). O

We are now ready to prove the main theorem of this section which
easily implies (5.10).

Theorem 5.12. Assume that (5.9) holds in dimension n — 1.

Let f: X — Z be a projective morphism to a normal affine variety
Z. Suppose that (X, D = S+ A+ B) is a purely log terminal pair of
dimension n, S = LD s irreducible and not contained in the stable
base locus of Kx + D, A > 0 is a general ample Q-divisor and B > 0
18 a Q-divisor.

Then there is a birational morphism g: T — S, a positive integer [
and a kawamata log terminal pair (T, ©) such that

Rs(X,I(Kx + D)) = R(T, (Kt + 9)).
Proof. Let pn: Y — X be a log resolution of (X, D) then we may write

If T is the strict transform of S then we may choose u so that (T, ¥ =
(I'y(X,D) — T)|r) is terminal. Note that 7" is not contained in the
stable base locus of Ky + 'y (X, D) as S is not contained in the stable
base locus of Kx + D.

Pick a Q-divisor F such that u*A— F is ample and (Y, Ty (X, D)+ F)
is purely log terminal. Pick m > 1 so that m(u*A — F) is very ample
and pick mC € |m(u*A — F)| very general. Then

(Y,I' =Ty (X, D) — i* A+ F + C ~g I'y(X, D)),

is purely log terminal and (T, ¥ = (I'" — T')|r) is terminal.
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On the other hand
R(X,k(Kx + D)) = R(Y,k(Ky +I'y(X, D))) and
Rs(X,k(Kx + D)) 2 Rp(Y, k(Ky + 1)),
for any k sufficiently divisible. Now apply (4.2) to (Y,T"). O

Proof of (5.10). We may assume that Z is affine and by (5.6), it suffices
to prove that the restricted algebra is finitely generated. As Z is affine,
S is mobile and as f is birational, the divisor D — S is big. But then

D—S~gA+ B,

where A is a general ample Q-divisor and B > 0. As S is mobile, we
may assume that the support of B does not contain S. Now

Kx+D =Kx+S+(1-¢€)(D—-S5)+eA+eB~g Kx+ D,

is purely log terminal, where € is any sufficiently small positive rational
number. By (5.4), we may replace D by D’. We may therefore assume
that D = S+ A+ B, where A is a general ample Q-divisor and B > 0.
Since we are assuming (5.9) in dimension n — 1, (5.12) implies that the
restricted algebra is finitely generated. O

6. THE CONE THEOREM

The following results (toghether with the existance and termination
of flips) constitute the heart of the minimal model program. These
results are due to the contribuitions of many mathematicians in the
80’s. In particular to Kawamata, Reid and Shokurov.

Theorem 6.1 (Non-vanishing Theorem). Let X be a projective variety,
D a nef Cartier divisor and A a Q-divisor such that (X,A) is sub
kawamata log terminal (i.e. A is possibly not effective). Suppose that
aD — Kx — A is Q-Cartier, nef and big for some a > 0.

Then, for all m > 0, we have H°(X, Ox(mD — LAL)) # 0.

Theorem 6.2 (Basepoint-free Theorem). Let (X, A) be a projective
kawamata log terminal pair and D be a nef Cartier divisor such that
aD— Kx—A is nef and big for some a > 0. Then |bD)| is basepoint-free
for all b>> 0.

Theorem 6.3 (Rationality Theorem). Let (X, A) be a projective kawa-
mata log terminal pair such that Kx+A is not nef. Let a = a(X,A) >
0 be an integer such that a(Kx + A) is Cartier. Let H be a nef and
big Cartier divisor, and define

r=r(H)=max{t c R: H+t(Kx + A) is nef}.
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Then r is a rational number and it may be written as r = u/v where
u,v are integers and

0<v<a(dimX +1).

Theorem 6.4 (Cone Theorem). Let (X,A) be a projective kawamata
log terminal pair. Then

(1) There are countably many rational curves C; C X such that
0<—(Kx+A)-C; <2dimX, and

NE(X) = NE(X)(rxta20 + > Rso[C)].
(2) For any € > 0, there are only finitely many rays
[Cj] € W(‘Xv>(Kx+A—i-eH)<0-

(3) If F C NE(X) is a (Kx +A) negative extremal face, then there
is a unique morphism contp : X — Z such that (contp),Ox =
Oz (in particular Z is normal, contp is surjective with con-
nected fibers) and an irreducible curve C C X is contracted to
a point if and only if [C] € F.

(4) let L be a line bundle on X such that L - C = 0 for all curves
with [C] € F. Then there is a line bundle Ly on Z such that
(contp)*Ly = L.

Proof. (We closely follow the proofin [10, §3.3].) If Kx+A isnef, (1) is
clear and there is nothing to prove. If not, we must begin by choosing
the countable collection of rays R; (eventually we would like to show
that R; = Rx[C;] for some rational curve C;). We consider nef divisor
classes L which are not ample so that F;, = L N NE # {0} (there
are countably many of these). We claim that if F;, ¢ NEg, a>o then
there is a nef divisor L’ such that

Fr, D Fyp, dim Fr, =1, and Fp, C WKX+A<O-

To see this, pick H an ample line bundle, a = a(Kx + A) such that
a(Kx + A) is Cartier, a = (a(d + 1))! and let

rp(n, H) :=max{t e R:nL + H 4+ t(Kx + A) is nef}.
By (6.3) we have arp(n,H) € N and rp(n, H) is a non-decreasing

function of n as L is nef. If £ € F, \ NE(k,+a).,, then
H-¢
rr(n, H) < )
(. H) —(Kx+4)-¢

Thus rp(n, H) is bounded and hence rp(n, H) = rp(H) for n > 0. So

D=DnL,H):=anlL+ H+r (H)(Kx+A))
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is a nef non-ample divisor (for n > 0) and
O%FDCFL, and FDCWKX+A<0U{O}.

To see the first inclusion, let £ € Fpp, then D-{ =0and (D—L)-£ >0
(as D — L is nef for n > 0). But then —L-{ =(D—L)-{—D-(>0
so that L-& =0 as L is nef. The second inclusion follows since by the
first inclusion then we have C'- D =C - (H + ar,(H)(Kx + A)) =0.

We must now show that by varying H we may assume that if dim F, >
1, then dim Fp < dim F. Let V' C N;(X) be the subspace spanned
by F, then we must show that

(nL—l—H—i—ow"L(H)(KX —|—A))‘V = (H—FOH’L(H)(KX —|—A))’V 7é 0.

If this were not the case, then the image of H via the projection
N'(X) — V is always contained in the linear subspace spanned by
the image of Kx + A. But since N'(X) is generated by classes of
ample divisors, it follows that dim F;, = 1 as required. Repeating the
above argument we end up with an L’ such that dim L' = 1.

We must now show that

W:NE(KX+A)ZO+ Z Fr.

dim F,=1

The inclusion D is clear. Suppose that the reverse inclusion does not
hold, then there is a divisor M intersecting the interior of the left hand
side and such that the right hand side is contained in M_y. Let H be
an ample divisor and

t = max{s > 0|H + sM}

is ample, then ¢ € Q (cf. (6.3)) and there is an element Z € NE \ {0}
such that (H+tM)-Z =0and Z-(Kx+A) < 0. By what we have seen
above, we can find a nef but not ample divisor L with Fy, C Fyiy
and dim F;, = 1. By the definition of H + tM it is clear that F is
contained in M~ and this is the required contradiction.

We now check that the one dimensional rays F only accumulate
in a neighborhood of (Ky + A)t, we proceed as follows. Let Kx +
A Hy, ..., Hy give a basis of N1(X) defined over Z, where the H; are
ample divisors. Let U C P4 = P(N;(X)) be the halfspace defined by
(Kx + A)~o and consider the coordinate system defined by

§- Hy §-Hq
ceU— =(—. ., ).
U= R A e K+ D))
Let Nz C N1(X) be the set of integral classes, then A = ¢p(Nz N (Kx +
A)o9) C A? is contained in a lattice. Thus if £ is an integral class

generating Fp, then ¢(§) € A and such classes do not accumulate in
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U; i.e. the only accumulation points of F}, are near the hyperplane at
infinity (Kx + A)t. But it is then clear that there are only finitely
many Fj, which are Kx + A + eH negative.

We next check that if F'is a Kx + A negative extremal face, then
F = Fp = D*NNE # {0} for some Cartier divisor D. We let < F' >C
N;(X) be the linear subspace spanned by F and V =< F >*+C N'(X).
F' is spanned by the extremal rays that it contains and each extremal
ray is defined over Q so that V is defined over Q. We may pick € > 0
such that F' C (Kx + A+ €H)~o. Note that as I is extremal, we have
<F>NNE(X)=F and so

W = NE(X) (rx+atet)so + 2 b

dim Fr,=1, FL.¢F

is a closed cone with
NE(X)=Wp+F, and WpNn < F >={0}.

Thus there is a hyperplane H containing F' and not intersecting W \
{0}. Equivalently H € V and H~y D Wr \ {0}. We may then find a
rational hyperplane H' € V such that H.; D W \ {0} and thus H’ is
a Q-Cartier divisor with Fpg: = F'.

To see (3) and (4), let F € NE(X) be a Kx + A negative extremal
face F' = Fp for some Q-Cartier divisor D. For any m > 0, the |Q-
Cartier divisor mD — (Kx + A) is strictly positive on NE(X) — {0}.
Thus mD — (Kx + A) is ample and mD is nef and by (6.2) mD is base
point free (for any m > 0). Let gp = g, : X — Z = Z,, be the Stein
factorization of X — |mD]| so that Z,, is normal and gr,Ox = Oy.
Let Mz, be the pull back of the hyperplane bundle to Z,, so that
mD = g, Mz, 1t is easy to see that a curve C is contracted by
gr if and only if C'- D = 0, thus gp,, = gr : X — Z is independent
of m > 0 (as it is determined by the curves it contracts). Hence
D=(m+1)D—mD ~ gpMgmi1 — gpMz . Similarly if L-C = 0 for
all [C] € F, then L+ mD also supports F' for m > 0 and so it defines
gr : X — Z. By what we have seen above L +mD ~ g5 Ny for some
Cartier divisor Nz on Z, so that L = g5 (Nz — Mz,,).

O

Corollary 6.5. If F' is a negative extremal ray, inducing a morphism
gr : X — Z, then there is a short exact sequence

0 — Pic(Z) — Pic(Z) = Z

where the first map is defined by L — gL and the second one by
M — M - C where C is any (fized) contracted curve. In particular
p(X) =p(Z) +1.
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Proof. Exercise (cf. [10, §3]). O

Corollary 6.6. If X is Q-factorial, F is a negative extremal ray, and
gr : X = Z is of divisorial or Fano type, then Z is Q-factorial.

Proof. Suppose that g is divisorial (i.e. that the codimension of the
exceptional locus is 1), and let E be an exceptional divisor such that
E - C # 0 for some exceptional curve C.Note that F' = R[C] For any
divisor B on Z, pick s = —(gz').B - C/E - C so that

((951).B + sE) - C' =0,

Pick m € N so that m(gz').B + sE) is Cartier. By (6.4), we have
m(gz')«B + sE) ~ giMy for some Cartier divisor M, on Z. Since

mB = gF*(m(gEI)*B + sE)) ~ My

it follows that B is Q-Cartier.

Suppose that gp is Fano (i.e. that dim X > dim Z. Let B be a divisor
on Z and let G be the closure of the pull back of B the restriction of
B to the smooth locus of Z (note that B° is a Cartier divisor on the
smooth locus of Z and hence it’s pull-back makes sense). Let C' C X,
be a curve on a general fiber X, so that /' = R[C]. Clearly G - C' = 0.
Pick m € N so that mG is Cartier. By (6.4), we have mG ~ g5 My for
some Cartier divisor Mz on Z. Since mB = gp,mG ~ My, it follows
that B is Q-Cartier. O

Proof of the Non-vanishing Theorem. This proof is based on an argu-
ment of Shokurov cf. [10, §3.5]
Step 0. We may assume that X is smooth, projective, (X, A) is sub
kawamata log terminal and aD — Kx — A is ample for some a > 0.
To see this, consider f : X’ — X a birational map from a smooth
projective variety. We write

Kx + A" = f"(Kx + A)

so that (X', A’) is sub kawamata log terminal (A’ is possibly not effec-
tive), and af*D — Kx — A" = f*(aD — Kx — A) is nef and big. So
we may choose an effective divisor F' € Divg(X’) and an ample divisor
A € Divg(X') such that f*(aD — Kx — A) ~g A+ F. It follows that
for any rational number 0 < € < 1, we have that

ff(aD—-Kx —A)—€eF ~g (1 —¢€)f(aD—Kx —A)+€cA
is ample. We then have that af*D — Ky, — A’ — €F is ample and
(X', A’ 4+ €F) is sub-kawamata log terminal. Let A” := A’ 4+ €F, then
f+A” > A and one sees that

RY(X', Ox(mf*D +"—A"") < h%(X,O0x(mD +"—A7)).
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Step 1. We may assume that D is not numerically equivalent to 0.
If in fact D = 0 (i.e. D is numerically trivial), for any a,t € Z we have
that

kD+"™—A"= Kx +{A}+tD — (Kx + A).
Since for t > a, tD — (Kx + A) is ample, by Kawamata Viehweg
vanishing we compute

RY(X,Ox(mD +"—A") = x(X,Ox(mD +"—A")) =

(X, Ox(T=A7) = W(X, Ox(T=AT)) £ 0.

Step 2. For any point v € (X/Supp(A)) there exists an integer qo
such that for all integers q > qq, there is a Q-divisor

M(q) = (gD — Kx — A)

with mult, M(q) > 2dim X.
To see this, let d = dim X. D is nef so that D¢ - A%=¢ > 0 for any
ample divisor A, and so

(¢D—Kx—A)* = ((¢—a)D+aD—Kx—A)* > d(qg—a)D-(aD—Kx—A)*".

Since D # 0, there is a curve C' C X such that D - C' > 0 and since D
is big, there is an integer p > 0 such that (p(aD — Kx — A))?! may
be represented by an effective cycle containing C'. Therefore, D - (aD +
G — Kx)% 1 > 0. Therefore, the right hand side in the above equation
goes to 0o as ¢ goes to 0o. So, by Serre-Vanishing and Riemann-Roch,
we have

d

W(Ox(e(qD — Kx = A))) = =:(2d)" + O(e™™).

Vanishing along x with multiplicity > 2de imposes at most
(2de)?

d!
conditions. So we can find a divisor

M(q,e) € |e(¢D — Kx — A)| with mult, M(q,e) > 2de.

We set M(q) = M(q,e)/e.
Step 3. We pick a log resolution f : ¥ — X which dominates
BL,(X). We set

(1) Ky = f*(Kx + A) + > b,;F;, where b; > —
(2) (1/2) (aD—Kx —A)=> p,F;is ample for some 0 < p; < 1,
(3) f*M(q) = > r;F; with Fj corresponding to the strict transform

of the exceptional divisor of Bl,(X) — X.
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Step 4. We define
N(bc) :=bf*D+> (—crj+b; — p;)Fj — Ky.
We would like to arrange that N (b, c) is ample. To this end we write
N(b,c)=bf*D + Z(—crj +b; — p;)F; — Ky
=bf"D —cf*(qD — Kx —A) = > p;F; = f*(Kx +A)
=(b—a—clg—a)f D+(1—c)f(aD—Kx—A)=> pF

= (b-aclg-a) f* D (5 (aD—Kx~A)+[3 f(aD~Kx—A)- Y ]

The first term is nef if b — a — ¢(q¢ — a) > 0, the second term is nef if
¢ < 1/2 and the remaining terms give an ample divisor. Thus, if these
conditions are satisfied by b and ¢, then N (b, ¢) is ample.
Step 5. We set
¢ =min{(1 + b; — p;)/r;|r; > 0}.

Then ¢ > 0 and we may assume that the p; have been chosen so that
the above minimum is achieved for exactly one value j' of j. We let
F = Fy. Now = ¢ SuppA and so by = d — 1 and ry > 2d so that
c<(l+(d—1)—po)/2d < 1/2. Therefore, ¢ < 1/2 and so N(b,c) is
ample for any b > a + c¢(q — a).

Step 6. We write

N(b,c)=bf*D+A—F — Ky

and f*A = —> g;F};. For any non-exceptional component F; we have
b; = g;. The coefficient of F} in A is (—cr; + b; — p;) < b; and so

FTAVS ffT=A"+ F
where E is f-exceptional and so
HO(Y,Oy(bf*D+"AM)) € HY, Oy (bf*D+fT—AT)) = H*(X, Ox (bD+"—A7)).
Now N (b, ¢) is ample so that
HYY,Oy(bf*D+T"A7 = F)) = H(Y,Oy(bf*D+"A — F7)) = 0.

Therefore since H°(F, Op((bf*D +"A7)|r)) # 0 (by induction on the
dimension!), then H*(X, Ox(bD +™—A"™)) # 0 as required
U

Proof of the Base Point Free Theorem. See [10, §3.2]. O

To prove the Rationality Theorem, we will need the following.
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Lemma 6.7. Let 0 # P(x,y) € Z|x,y] with deg P(x,y) < n. Assume
that there is a real number r € R, an integer a and a real number
€ > 0 such that P(z,y) = 0 for all sufficiently large integers x,y with
0<ay—rx<e.

Then r € Q and if r = p/q with (p,q) =1, then ¢ < a(n+1)/e.

Proof. (See [10, 3.19]) Suppose r ¢ Q, then there is a pair of sufficiently
big integers (Z,y) with 0 < ay — rZ < ¢/(n + 2). Therefore

(z,9),(22,29), ..., ((n+ 1)z, (n + 1)y)

are solutions of P(z,y). It follows that gz — Zy divides P(z,y). We
may repeat this argument, choosing smaller € so that we get a new pair
of sufficiently big integers (z,y). It follows that P(z,y) is divisible by
infinitely many linear polynomials. This is the required contradiction.

Therefore r = p/q € Q and we may assume (p,q) = 1. For any j > 0,
there are integers (z;,y;) such that ay; — rz; = aj/q. We have that
a(y; + kp) — r(xz; + akp) = aj/p for any k € Z. Therefore if aj/p <€,
one sees (as above) that (ay — rz) — aj/p divides P(z,y). Since there
are at most n such values, we have that a(n+1)/p > e. O

Lemma 6.8. Let X be a smooth projective variety, D; € Div(X), A €
Divg(X) such that Supp(A) has simple normal crossings and ™A™ > 0.
If > u; Dy is nef and Y w;D; + A — Kx is ample for some u; € Z, then

P(xy,...,2%) = X(Z z;D; +TA7) #0.
Proof. For any integer m > 0, > mu;D; + A — Ky is ample so that
XO _muD; + A7) = H(Ox (D mu;D; + "A7)).
The Lemma now follows from (6.1). O

Proof of the Rationality Theorem. We follow [10, §3.4].
Step 1. We may assume that H is base point free.
Assume that a(Kx + A) is Cartier, then by (6.2),

H' :==m(cH + da(Kx + A))

is base point free for any m > ¢ > d > 0.
Note that

t' d 1
H + M(KX +A)=—(H +t(Kx +A)).
me me
Therefore r(H) € Q if and only if r(H’) € Q. Note that if r(H’) divides
q, then r(H) has denominator dividing mcv, but as m > ¢ > 0, r(H)

has denominator dividing v.
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Step 2. Fix € > 0. For any sufficiently large integers (p, q) with
0<aq—rp<elet

L(p,q) = Bs|pH + qa(Kx + A)].

(Here, L(p,q) = X if |pH + qa(Kx + A)| = 0.) Then L(p, q) is inde-
pendent of (p,q) and non-empty. We let Ly denote this set.

To see this, note that if p’, ¢ > p,q, then we may write (p/,q¢') =
(kp + kq) + (p" + ¢") where p"H + ¢"a(Kx + A) is ample. Therefore
L(p',q¢') € L(p,q) and by Noetherian induction, the sets L(p,q) are
independent of (p, q). Since pH + qa(Kx + A) is not nef, it is not base
point free and so Lo # 0.

Step 3. Pick a log resolution f : Y — X, let D; = f*H, Dy =
f*(a(Kx + A)) and write

Ky = f"(Kx + A) + A.
We have that " A7 > 0 is exceptional. Therefore
H°(Y, Oy (pDy + gDy + A7) = H*(X, Ox (pH + qa(Kx + A))).

Define
P(z,y) = x(zDy +yDy +"AM).
Since Dy is nef and big, P(z,y) # 0.
Step 4. If r ¢ Q, then Ly # X.
For any 0 < ay — rx < 1, we have that

Dy +yDy+ A— Ky = f*(zH + (ay — 1)(Kx + A))
is nef and big. Therefore, by (2.38)
H'(Y,Oy(xDy +yDy +"A")) =0  Vi>0.

By (6.7) there are sufficiently large integers p, ¢ such that 0 < ag—rp <
1 and

P(p,q) = h°(Y, Oy (pDy + ¢Dy + A7) > 0.
Therefore [pH + ga(Kx + A)| # 0.

Step 5. Let I C Z x Z such that 0 < ay —rz < 1 and Bs(zH +
ya(Kx+A)) = Ly. For any (p,q) € Ilet f: Y — X be a log resolution
and write:

(1) Ky = f*(Kx+A)+>_ a;jF; where a; > 1 as (X, A) is kawamata
log terminal,

(2) f*(pH + (qa — 1)(Kx + A)) — > p;F; is ample for some 0 <
p; < 1 (this may be achieved as pH + (¢a — 1)(Kx + A) is nef
and big), and

(3) f*lpH 4+ qa(Kx + A)| = |L| + >_r;F; where r; > 0, Y r;F; =
Fix f*|pH + gqa(Kx + A)| and |L] is base point free.
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We may choose ¢ > 0 and 0 < p; < 1 so that

Y (—erjta;—p)Fy=A = F
where "A’7 > 0 and A’ A F = 0. Notice that f(F) C Bs(pH +qa(Kx +
A)).
Step 6. If p, ¢’ > 0 and 0 < a¢’ — rp’ < aq — rp, then the divisor
NP, d)=f(WH+da(Kx +A)+ A = F - Ky

is ample.
We have

N, d) =10 —0+p)H +q — (1+c)g)a(Kx + A))+
(L +opH + (1 + 0)ga(Kx + A)) + > (—erj +a; — pj)F; — Ky
=cL+f"(p'—1+c)p)H+qd — (1+c)ga(Kx +A))

+f (H + (qa = 1)(Kx + 8)) = Y _p;F;.
But L is base point free and hence nef, (p' — (1 + ¢)p)H + (¢’ — (1 +
c)q)a(Kx + A) is nef (as (¢ — (1 + ¢)g)a < r(p) — (1 4+ ¢)p)) and

f*(pH + (qa — 1)(Kx + A)) — > p; Fj is ample.
Step 7. F is not a component of

Bs|f*(p'H + da(Kx + A)) +"A.
By Step 6, the homomorphism
H(Y, Oy (f*(p'H + d'a(Kx + A)) +7A7)) —
HOE, Op(f* (0 H + da(Kx + A)) +TA™)
is surjective. By (6.8), the polynomial
X(F,Op(f*(P'H + ¢'a(Kx + A)) +TA™))
is not identically zero and for 0 < aq’ — rp’ < aq — rp, we have that
(f*(P'H +q'a(Kx + A)) + A7) |p — Kp = N (¢, )|

is ample so that
\(F, O (f* (6 Hqa( K x+8))+7 A) = h(F, O (f* (¢ Hq/a( Kx-+A))+7 A7),

By (6.7) (with € = ag—rp), there are p’, ¢’ > 0 such that 0 < aq'—rp’ <
aq — rp and

W (F.Op(f* (W' H + qd'a(Kx + A)) +TA7)) #0.

The claim now follows.
It follows that f(F') is not contained in Lg. This is a contradiction

and so r € Q.
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Step 8. We must now show that if r = u/v where u, v are coprime
integers, then 0 < v < a(dim X + 1). See [10, §3.4].
O

6.1. Generalizations. In what follows we will also need straightfor-
ward generalizations of the above results to the relative case with real
divisors.

Theorem 6.9 (Basepoint-free Theorem). Let (X, A) be a Q-factorial
kawamata log terminal pair a m: X — U a projective morphism (dom-
inant with connected fibers) to a normal variety and D be a m-nef R-
Cartier divisor such that aD — Kx — A is w-nef and mw-big for some
a > 0.

Then D is semiample over U (i.e. there is a morphism [ : X — Z
over U and a divisor H € Divg(Z) ample over U such that D = f*H.

Proof. As the property that D is semiample over U is local, we may
assume that U is affine. This case is (7.1) of [4] (for example). O

Corollary 6.10. Let (X,A) be a Q-factorial kawamata log terminal
pair, where A is an R-divisor. Let f: X — U be a projective mor-
phism of normal quasi-projective varieties such that Kx + A is nef over
U and A is big over U.

Then Kx 4+ A is semiample over U.

Proof. We may assume that U is affine.
By (8.6) we may find Kx + A’ = Kx + A+ B ~g Kx + A, where
A >0 is a general ample Q-divisor and B > 0. As

(Kx +A) = (Kx + B) ~rv A,
is ample and Ky + B is kawamata log terminal, (6.2) implies that

Kx 4+ A is semiample. O

Exercise 6.11. Use (6.2) to show that if f: X — U is a projective
morphism of normal quasi-projective varieties such that Kx + A s
dit and —(Kx + A) is ample over U, then if B,C € Divg(X) are
numerically equivalent, they are Q-linearly equivalent. (Hint. Reduce
to the klt case and let D = B — C.)

7. THE MINIMAL MODEL PROGRAM
7.1. Types of models.

Definition 7.1. Let ¢ : X --» Y be a birational map that extracts

no divisors (i.e. ¢! contracts no divisors), D € Divg(X) such that
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D' = ¢,D € Divg(Y). Then ¢ is D-non-positive (resp. D-negative)
if for some common resolution p: W — X and q: W — Y, we have

p*D=q¢" D'+ FE
where > 0 is effective and q-exceptional (respectively E > 0 is q-
exceptional and its support contains all ¢-exceptional divisors).

Lemma 7.2. Let ¢ : X --» Y be a birational map that extracts no
divisors (i.e. ¢~' contracts no divisors), D € Divg(X) such that D' =
¢.D € Divg(Y') is nef.

Then ¢ is D-non-positive (resp. D-negative) if for some common
resolution p : W — X and q: W — Y, we have

p*D=q¢"D +FE
where p,E > 0 (respectively p.E > 0 and its support contains all ¢-
exceptional divisors).

If D=Kx+A and D' = Ky + ¢,A then this condition is equivalent
to

(IF(X, A) < aF(Ya ¢*A) (T@Sp. aF<X7 A) < aF(Y’ ¢*A))
for all ¢p-exceptional divisors F' C X.
Proof. By (2.7). O

Definition 7.3. Let m : X — U be a projective morphism of normal
quasi-projective varieties. If Kx + A is log canonical and ¢ : X --+Y
18 a birational map over U that extracts no divisors, then we say that

(1) Y is a weak log canonical model for Kx+A over U (WLCM(X,A/U))
1s ¢ if Kx + A-non-positive and Ky + ®,A is nef over U.
(2) Y is alog canonical model for Kx+A over U (LCM(X,A/U))
if ¢ is Kx + A-non-positive and Ky + ®,A is ample over U.
(3) Y is alog terminal model for Kx+A over U (LTM(X,A/U))
s ¢ if Kx + A-negative and Ky + ®,A is divisorially log ter-
manal nef over U and Y is Q-factorial.
If v : X --+ Z is a rational map over U, then Z is an ample model
for Kx + A over U if there is a log terminal model ¢ : X --+Y for

Kx + A over U, a morphism f :Y — Z over U and a ample divisor
H € Divg(Z) such that Ky + ®,.A = f*H.

Lemma 7.4. Let 7w : X — U be a projective morphism of normal quasi-
projective varieties. If Kx + A =y Kx + A’ are log canonical (resp.
divisorially log terminal) and ¢ : X --+ Y is a birational map over
U that extracts no divisors, Y is normal and Q-factorial, then Y 1is a

weak log canonical model (resp. a log terminal model) for Kx + A over
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U if and only if it is a weak log canonical model (resp. a log terminal
model) for Kx + A’ over U.

Proof. Let p: W — X and ¢ : W — Y be a common resolution and
write

P (Kx+A) = ¢ (Ky+¢.A)+E and P (Kx+A") = ¢ (Ky+¢.A)+FE'.

Since £ — E' =y 0 is g-exceptional, by (2.7), we have F = E’ and the
lemma follows. O

7.2. The minimal model program (traditional). Recall the fol-
lowing.

Definition 7.5. Let 7 : X — U be a projective morphism of normal
quasi-projective varieties, (X, A) a log canonical pair and f : X — Z
be a morphism of normal varieties (surjective with connected fibers)
over U. Then f s a flipping contraction over U if f is a small
(i.e. dimEx(f) < dim X — 1) birational morphism of relative Picard
number p(X/Z) =1, X is Q-factorial and —(Kx +A) is f-ample. The
flip f*: XT — Z (if it exists) is given by X = LCM(X,A/Z). In
particular f+ is a small birational morphism of relative Picard number
p(X+/7Z) =1, X is Q-factorial cf. (7.7) and (Kx++A") is f-ample
where AT = ((f)" 1o f).A.

Lemma 7.6. Let (X,A) be a log canonical pair, f : X — Z be a
flipping contraction and f+: X — Z its flip. Then

aE(Xv A) S aE(X+7A+)

for any divisor E over X and ag(X,A) < ap(X™, AT) if the center of
E is contained in the flipping or flipped locus. In particular (X, A™)
15 log canonical.

Proof. Let p: W — X and ¢ : W — X be a common log resolution
and write
P (Kx +A)=q¢"(Kx+ + A")+ F.

Since Kx + A is nef over Z (and hence is nef over X ™) and since F
is g-exceptional, then by (2.7), F > 0. Suppose that E has center V/
contained in the flipping locus. If F is not contained in the support of
F, then by (2.7), W, N F = () where v € V is a general point and W,
is the fiber over v. Let C be a curve in W, such that either p,C' # 0 or
¢.C #0. Then as C-F = 0, we have p,C-(Kx+A) = ¢.C-(Kx++AT)
which is impossible. U

Lemma 7.7. Let (X,A) be a dit Q-factorial pair, f : X — Z be a
flipping contraction and [+ : X* — Z its flip. Then X+ is Q-factorial
and Kz + f.A & Divg(Z).
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Proof. Replacing 6 by (1 —€)A for 0 < ¢ < 1, we may assume that
(X,A) is klt. Let DT € WDiv(X™) and D € WDiv(X) be its strict
transform. As X is Q-factorial, D € Divg(X). Pick a divisor H =
h(Kx+A) € Divg(X) such that (D+ H)-C = 0 for any f-exceptional
curve Then D + H = f*G for some G € Divg(Z) cf. (6.4). We have
that Dt 4+ ¢, H = (f7)*G and ¢, H = h(Kx+ + AT) € Divg(X™).
Suppose now that Kz+ f,A € Divg(Z), then Kx+A = f*(Kz+f.A)
contradicting the fact that —(Ky + A) is f-ample. O

Definition 7.8. Let m : X — U be a projective morphism of normal
quasi-projective varieties, (X,A) a Q-factorial log canonical pair and
[+ X — Z be a morphism of normal varieties (surjective with con-
nected fibers) over U. Then f is a divisorial contraction over U
if f is a birational morphism of relative Picard number p(X/Z) = 1,
dimEx(f) =dim X — 1 and —(Kx + A) is f-ample.

Lemma 7.9. Let (X, A) be a dit (resp. kit) Q-factorial pair, f : X —
Z be a divisorial contraction, then Z is Q-factorial and apx (X, A) <
apx(r)(Z, f:A). In particular (Z, f.A) is dlt (resp. klt). In particular
(Z, f.A) s log canonical.

Proof. Let E = Ex(f), then E - C # 0 were R = R=%[C] is the con-
tracted negative extremal ray. Let D € WDiv(Z) and D’ € WDiv(X)
be its strict transform. As X is Q-factorial, D’ € Divg(X). Pick
h # 0 such that (D + hE) - C = 0 for any f-exceptional curve. Then
D+ hE = f*G for some G € Divg(Z) cf. (6.4). But then D = G and
we are done.

We may now write K x+A = f*(Kz+f.A)+aE. By (2.7),a > 0. O

Definition 7.10. Let m : X — U be a projective morphism of normal
quasi-projective varieties, (X, A) a log canonical pair and f : X — Z
be a morphism of normal varieties (surjective with connected fibers)
over U. Then f is a Mori fiber space if p(X/Z) =1 and —(Kx+A)
1s ample over Z.

Let m: X — U be a projective morphism of normal quasi-projective
varieties. Assume that (X, A) is a divisorially log terminal Q-factorial
pair. We would like to find a finite sequence of well understood geo-
metric operations (flips and divisorial contractions) whose output is a
log terminal model for Kx + A over U or a Mori fiber space.

Step 1. If Kx + A is nef over U stop (this is a minimal model over
U). Otherwise, pick a Kx + A negative extremal ray R and consider
the corresponding contraction morphism f = contg : X — Z over U.

Note that p(X/Z) =1 and —(Kx + A) is ample over Z.

Step 2. If dim X > dim Z stop (this is a Mori fiber space).
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If dimX = dim Z and dim Ex(f) = dim X — 1, we say that f is
a divisorial contraction. In this case Z is Q-factorial, (Z, f.A) is
divisorially log terminal cf. (7.9). Replace (X, A) by (Z, f.A) and go
back to Step 1.

If dimX = dimZ and dimEx(f) > dim X — 1, we have a small
contraction. In this case Z is not Q-factorial (cf. (?7?)) so we may
not replace (X, A) by (Z, feA). Instead we replace (X, A) by the flip
(XT,AT) of f: X — Z and go back to Step 1.

Step 3. For this procedure to be succesful, we must show that flips
exist and that it terminates after finitely many steps. Notice that if
f X — Z is divisorial, then p(Z) = p(X) — 1 and if X --» X+
is a flip, then p(X) = p(X ™). Since p(X) is a positive integer, there
are finitely many divisorial contractions. We must therefore show that
there are no infinite sequences of flips.

Conjecture 7.11. Let (X, A) be a log canonical pair.

(1) If f: X — Z is a flipping contraction, then the flip of f exists.
(2) There are no infinite sequences of flips ¢; : X; --» X1 for
(Xi, A;) where Ajr1 = (¢3)A; and (X, A) = (Xo,Ag) is log

canonical.

Remark 7.12. We will show that kawamata log terminal flips exist in
all dimensions. Termination of flips is known in dimension 3 and there
are partial results in dimension 4. We will show that sequences of flips
for the minimal model program with scaling terminate when (X, A) is
kawamata log terminal and A is big.

Remark 7.13. If dim(X) = 2, then there are no flips. Starting from

a smooth surface X (and A = 0), one proceeds by contracting the
extremal rays corresponding to —1 curves i.e. rational curves C' =
P with C* = Kpi - C = —1. Each time, one obtains a morphism

X; — X1 were Xiyq is a smooth surface and p(X;11) = p(X;) — 1
is a positive integer. After contracting finitely many —1 curve, we
therefore obtain a minimal surface i.e. a surface X,,;, birational to
X that contains no —1 curves. We then have that either Kx . is nef
(this happens when k(X) > 0) or that there is a negative extremal ray
R. Contracting this ray we obtain a Mori fiber space X, — Z and
so X 1s covered by rational curves. If dim Z = 0, then X,,;, = IP’(QC, and
if dim Z =1 then X, — Z is a ruled surface.

7.3. The minimal model with scaling. In this version of the mini-

mal model program, we start with a Q-factorial kawamata log terminal

pairs (X, A) and (X, A + C) where Kx + A + C' is nef and A is big.
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We pick
A = sup{t|Kx + A + tC is nef}.

If A =0, then Kx 4+ A is nef and we stop.

Assume X\ > 0. Since A is big, there is a Kx + A negative extremal
ray R = R2°[X] such that (Kx + A+ XC) -3 = 0 cf. (6.4). Let
f X — Z be the corresponding contraction.

If dim Z < dim X we have a Mori fiber space and we stop.

Otherwise, we replace (X, A) by the corresponding flip or divisorial
contraction. Notice that f is Ky + A+ AC-trivial so that Kx + A+ \C
is nef even after peforming the flip or divisorial contraction. We may
therefore repeat the above procedure.

In this way we obtain a sequence of weak log canonical models for
(X, A +tC) for t € ]0,1].

If we can show that there are only finitely many such models, then
we can show that the minimal model program with scaling terminates.

7.4. Minimal models for varieties of general type.

Theorem 7.14. Let (X, A) be a projective Q-factorial kawamata log
terminal pair.

If A is big then any minimal model program with scaling for Kx + A
terminates. That is, if Kx + A s pseudo-effective then Kx + A has a
log terminal model and if Kx + A s not pseudo-effective then Kx + A
has a Mori fiber space.

We have the following immediate consequence.

Corollary 7.15. Let (X,A) be a projective kawamata log terminal
DaLT.

If Kx + A is big, then Kx + A has a log terminal model and a log
canonical model.

Proof. Since Kx + A is big, there is an effective divisor D € Divg(X)
such that Ky + A ~g D > 0. Let 0 < e < 1, then Kx + A+ D ~p
(1+¢€)(Kx+A) is kawamata log terminal and A + D is big. It follows
that Kx + A+ D has a log terminal model which is also a log terminal
model for Kx + A. Since A + D is big, by (6.2), Kx + A+ D is
semiample so that there is a projective morphism ¢g : X — Z such
that Kx + A+ D = g*A and A € Divg(Z) is ample. It follows that
g : X — Z is the log canonical model of Kx + A. U

Remark 7.16. The above results also hold in the relative case.

Corollary 7.17. Let f : X — Z be a flipping contraction, then the

flip of [ exists.
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Corollary 7.18. Let (X, A) be a kit pair and € be a set of exceptional
divisors over X such that if E € &, then ag(X,A) < 0. Then there
exists a birational morphism v : X' — X such that X is Q-factorial
and Ex(v) = . If € =0, then v is small and we say that X' — X is a
Q-factorialization of (X, A) and if £ contains all exceptional divisors
such that ap(X,A) <0, then Kx + A" = v*(Kx + A) is terminal and
we say that X' — X is a terminalization of (X, A).

Proof. Let f Y — X be alog resolution of (X, A) and write Ky +I" =
f*(Kx +A)+ E where I' =T'(X,A) and E = E(X,A). Let F be the
reduced divisor consisting of all exceptional divisors not contained in €
and 0 < € < 1. Then (Y,I'+€F) is kit and so thereis ¢ : Y --» X" alog
terminal model for (Y,I' 4 €F') over X. In particular X’ is Q-factorial.
Then Ky + ¢.(I' + €F) is nef over X and hence so is ¢.(E + ¢F') (since
Kxi+¢.(I'—F) =x 0). By the negativity lemma E+¢F < 0 and hence
E + ¢F = 0 so that the divisors in £ are contracted by Y --» X'. It
is also easy to see that if P is a prime divisor contracted by Y --+ X,
then

ap(Y,T—FE) =ap(X,A) = ap(X', ¢.(T—F)) = ap(X', ¢.(T+€F)) > ap(Y,T+eF)
and hence that P is contained in Supp(F + F) = €. O
7.5. The main induction. We begin with the following.

Definition 7.19. Let m: X — U be a projective morphism of nor-
mal quasi-projective varieties, and let V' be a finite dimensional affine
subspace of the real vector space of Weil divisors on X . Define

L={AecV|Kx+ A islog canonical },
N, ={Ae€L|Kx+A isnef over U}.

Moreover, fixing an R-divisor A > 0, define
Va={A|A=A+B,BeV}
Li={A=A4+BeVy|Kx+ A islog canonical and B > 0},

Ean={A€ L] Kx+ A is pseudo-effective over U},
Nar={A € Li|Kx+ A is nef over U}.

Given a birational map ¢: X --+ Y over U, whose inverse does not
contract any divisors, define

Wy,={Aec&s.| (Y, =¢.A) is a weak log canonical model for (X,A) over U },
and given a rational map : X --+ Z over U, define

Az ={A€&sr|Z is an ample model for (X, A) over U },.
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Almost invariably, the support of A will have no components in
commnon with V. In this case the condition that B > 0 is vacu-
ous. In nearly all applications, A will be an ample Q-divisor over U.
In this case, we often assume that A is general in the sense that we
fix a positive integer such that kA is very ample, and we assume that
A = A, where A’ € |kA| is very general. With this choice of A, we
have

NA,ﬂCgAJC£A:£+ACVA:V+A,

and the condition that the support of A has no common components
with any element of V' is then automatic.

The proof of (7.14) is by induction on the dimension. We brake it
down in to several statements of independent interest.

Theorem 7.20 (Existence of pl-flips). Let f: X — Z be a pl-flipping
contraction for an n-dimensional purely log terminal pair (X, A).
Then the flip f*: Xt — Z of [ exists.

Theorem 7.21 (Existence of log terminal models). Let 7: X — U
be a projective morphism of normal quasi-projective varieties, where
X has dimension n. Suppose that Kx + A is kawamata log terminal,
where A is big over U.

If there exists an R-divisor D such that Kx + A ~grgy D > 0, then
Kx 4+ A has a log terminal model over U.

Theorem 7.22 (Finiteness of models (big case)). Let m: X — U be a
projective morphism of normal quasi-projective varieties, where X has
dimension n. Fiz A, a general ample Q-divisor over U. Suppose that
Kx + Ag is kawamata log terminal, for some Ay.

Let C C L4 be a rational polytope such that Kx + A is w-big, for
every A € C.

Then the set of isomorphism classes

{Y|Y is a log terminal model over U of a pair (X,A), where A € C},
18 finite.

Theorem 7.23 (Non-vanishing theorem). Let m: X — U be a pro-
jective morphism of normal quasi-projective varieties, where X has di-
mension n. Suppose that Kx + A is kawamata log terminal, where A
s big over U.

If Kx + A is w-pseudo-effective, then there exists an R-divisor D
such that Kx + A ~gp gy D > 0.

Theorem 7.24 (Finiteness of models). Let m: X — U be a projective

morphism of normal quasi-projective varieties, where X has dimension
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n. Fiz A, a general ample Q-divisor over U. Suppose that Kx + Ag is
kawamata log terminal, for some Aq.
Then the set of isomorphism classes

{Y|Y is the weak log canonical model over U of a pair (X, A), where A € L4},
s finite.

Theorem 7.25 (Effective Zariski decomposition). Let m: X — Z be
a projective morphism to a normal affine variety. Let (X,A = A+ B)
be a kawamata log terminal pair of dimension n, where A > 0 is an
ample Q-divisor and B > 0. If Kx + A is pseudo-effective, then

(1) The pair (X,A) has a log terminal model p: X --» Y. In
particular if Kx + A is Q-Cartier then the log canonical ring

R(X,Kx +A) = @ H (X, Ox(tm(Kx + A).)),

meN

1s finitely generated.

(2) LetV C Divg(X) be the vector space spanned by the components
of A. Then there is a constant 6 > 0 such that if G is a prime
divisor contained in the stable base locus of Kx + A and =2 € V
such that |= — Al| < 0, then G is contained in the stable base
locus of Kx + =.

(3) Let W C V be the smallest rational affine space containing A.
Then there is a constant n > 0 and a positive integer r > 0
such that of =2 € W is any divisor and k is any positive integer
such that |2 — A|| < n and k(Kx +Z)/r is Cartier, then every
component of Fix(k(Kx +Z)) is a component of the stable base
locus of Kx + A.

The proof of Theorem 7.20, Theorem 7.21, Theorem 7.22, Theo-
rem 7.23, Theorem 7.24 and Theorem 5.9 proceeds by induction:

e Theorem 5.9,,_; implies Theorem 7.20,,, see (5.12).

e Theorem 7.21,,_1, Theorem 7.24,,_; and Theorem 7.20,, imply
Theorem 7.21,, cf. (9.4).

e Theorem 7.21,, implies Theorem 7.22,,, cf. (10.4).

e Theorem 7.23,,_1, Theorem 7.24,_;, Theorem 7.21,, and Theo-
rem 7.22,, imply Theorem 7.23,,, cf. (11.4).

e Theorem 7.21,, and Theorem 7.23, imply Theorem 7.24,,, cf.
(10.4).

e Theorem 7.21,, Theorem 7.23,, and Theorem 7.24,, imply The-
orem 5.9, cf. (?7).
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8. SPECIAL TERMINATION WITH SCALING

In this section we show that we have special termination of the MMP
with scaling.

Lemma 8.1. Assume Theorem 5.12,, and Theorem 7.24,,.

Let m;: X; — U be a sequence of projective morphisms of normal
quasi-projective varieties, where X; and X; are isomorphic in codimen-
sion one. Suppose that there exist R-divisors A; such that Kx, + A,
1s R-Cartier and nef over U. Suppose that there are fixed R-divisors
Ay > 0 and By > 0 on X = Xy, with transforms A; and B; on X,
such that

Ay <A < By,
where Ay is big over U and Kx, + By is kawamata log terminal. Let n
be the dimension of X.
Then the set of isomorphism classes of birational maps

{X——-) XZ|Z€N},
is finite.

Here, two birational maps ¢: X --» X; and ¢: X --» X are isomor-
phic if there exists an isomorphism 7: X; — X such that ¢ = 7o ¢.

Proof. As we are assuming Theorem 5.12,,, replacing X by a log ter-
minal model we may assume that X is Q-factorial (cf. (7.18).

Let Al be the strict transform of A; on X. By (8.6) we may assume
that A; is an ample Q-divisor over U and Bj is an effective Q-divisor.
As (X, A;) is a weak log canonical model of (X, A?), the result follows
as we are assuming Theorem 7.24,,. U

Lemma 8.2. Assume Theorem 5.12,_1 and Theorem 7.24,_1.

Let m: X — U be a projective morphism of normal quasi-projective
varieties, where X 1is a Q-factorial variety of dimension n. Suppose
that

Kyx+A+C=Kx+S+A+B+C,
is divisorially log terminal and nef over U, where S = A, B4 (A/U)
does not contain any log canonical centres of (X, A+C') and B, C' > 0.

Then every (Kx + A)-MMP over U with scaling of C is eventually

disjoint from S.

Proof. Suppose not. Let X; --» X;,1 be an infinite sequence of flips
and divisorial contractions over U, starting with X; := X, for the
(Kx + A)-MMP with scaling of C', which meets S infinitely often. We
may write A ~g iy A'+ B’ where A’ is ample over U and the support of

B’ contains no log canonical centre of (X, A+ C'). Replacing A by eA’
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and B by B+ (1—¢)A+eB’ where 0 < € < 1, we may therefore assume
that A is ample over U. Let T be a component of S that intersects the
flipping locus infinitely many times. Pick a rational number ¢ > 0 such
that A’ = A+¢(S —1T') is ample over U. Replacing A’ by an R-linearly
equivalent over U divisor, we may assume that

Kx+S—€(S—T)+A/+BN]}Q’UKx—l—S—l—A—{—B,

is purely log terminal. Note that every step of the (Ky + S + A+ B)-
MMP over U is a step of the (Kx +S —¢(S—T)+ A"+ B)-MMP over
U,and LS —¢(S—T)+ A"+ B, = T. Thus, replacing Kx + A by
Kx+ S —¢€(S—T)+ A"+ B we may assume that S is irreducible and
Kx + A is purely log terminal. Let S; be the strict transform of S in
X; and let S; --+ S;;1 be the induced birational map.

Since there are at most finitely many divisorial contractions, we may
assume that there is an integer k£ > 0 such that for any ¢ > k the
rational map X; --» X;,; is a flip.

By (4.2.14) of [3], we may also assume that for any i > k, the rational
map S; --+ S;;1 does not extract any divisors. By (1.6) of [1], we may
therefore assume that for any ¢ > k, the rational map S; --+ S;11 is
an isomorphism at the generic point of every divisor on S; and S;.;.
In particular we may assume that S; --+ S;;1 is an isomorphism in
codimension one.

Let A; and C; be the strict transforms of A and C on X;. Since S; is
the unique log canonical centre of (X, A;), S; is normal. By adjunction
we may write

(KXi + A1)|Sz = KSi + 6.
Then, for any i > k, ©; is the strict transform of ©,. By definition of
the MMP with scaling there is a t; > 0 such that Kx, + A; +¢,C; is
nef and log canonical. It follows that Kg, + ©; +t;C}|s, is also nef and
log canonical. Let to, = lim¢;, then X; --» X411 is Kx, + A + tCh
non positive for all 2 > 0. Proceeding as above, one sees that

KX—FA—Q—tOOCNR,UKx-FS-FA/-FB/

where Kx +S+ A’ + B’ is purely log terminal and A’ is ample over U.
By (8.8), we have that

Kx, + A+ toCh ~R,U Kx, + Si+ A" + B”,

where Kx, + S, + A” + B” is purely log terminal and A” is ample over
U. In particular

Ks, + 0, +1tCils, ~rv (Kx, +Sk+A"+B")|s, = Kg, +A"|s, +Ex,

where Kg, + A”|s, + Zj is kawamata log terminal. It then follows that
Kg, 4+ A"|s, +Zk+ (t; — too) Cy is kawamata log terminal for any i > 0.
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Thus the hypotheses of (8.1) are satisfied, and the set of isomorphism
classes

{S---’ SZ|Z€N},
is finite, so that the set of pairs

is also finite.

On the other hand, let X; — Z; be the flipping contraction and
let T; be the normalisation of the image of S; in Z;, so that there
are birational morphisms p;: S; — T; and ¢;: S;.1 — T;. Note
that —(Kg, + ©;) is p-ample whilst (Kg,,, + ©;41) is ¢-ample. By
assumption infinitely often the flipping locus intersects S;. If p; is an
isomorphism and the flipping locus intersects S;, then S; - ¥; > 0,
where ¥; is a flipping curve. But then S;,; must intersect any flipped
curve negatively, so that all flipped curves lie in S;;; and ¢; is not
an isomorphism. In particular infinitely often one of the birational
morphisms p; or ¢; is not an isomorphism.

Thus we may assume that py or ¢ is not an isomorphism, where the
isomorphism class of Sy, is repeated infinitely often. Pick any valuation
v whose centre is contained in the locus where Sy --+ Si, is not an
isomorphism. By (2.28) of [9]

a(v, Sk, Or) < a(v, Sk41,0k11)  and  a(v, Si, 0;) < a(v, Siv1, ©i),
for all © > k 4 1, a contradiction. O

We use (8.2) to run a special MMP:

Lemma 8.3. Assume Theorem 5.12,_1, Theorem 7.24,_1 and Theo-
rem 7.20,.

Let m: X — U be a projective morphism of normal quasi-projective
varieties, where X is Q-factorial of dimension n. Suppose that (X, A+
C =S+ A+ B+ C) is a diisorially log terminal pair, such that
LA+ Cu= S5, B, (A/U) does not contain any log canonical centres of
(X, A+ C), and B > 0, C > 0. Suppose that there is an R-divisor
D > 0 whose support is contained in S and a real number o > 0, such
that

(*) KX‘FANR,UD—FQC.

If Kx+A+C is nef over U then there is a log terminal model ¢p: X --+
Y for Kx + A over U, where B (¢.A/U) does not contain any log
canonical centres of (Y,I' = ¢, A).
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Proof. By (8.7) and (8.9) we may run the (Kx + A)-MMP with scaling
of C over U, and this will preserve the condition that B, (A/U) does
not contain any log canonical centre of (X, A). Pick ¢ € [0, 1] minimal
such that Kx + A +tC is nef over U. If ¢t = 0 we are done. Otherwise
we may find a (Kx + A)-negative extremal ray R over U, such that
(Kx+A+tC)-R=0. Let f: X — Z be the associated contraction
over U. Ast >0,C'-R > 0andso D-R < 0. In particular f is always
birational.

If f is divisorial, then we can replace X, S, A, B, C' and D by their
images in Z. Note that (%) continues to hold.

Otherwise f is small. As D - R < 0, R is spanned by a curve X
which is contained in a component 7" of S, where T'- ¥ < 0. Note that
Kx+ S+ A+ B —¢S—T) is purely log terminal for any positive
€ < 1, and so f is a pl-flip.

As we are assuming Theorem 7.20,,, the flip f': X' — Zof f: X —
7 exists. Again, if we replace X, S, A, B, C' and D by their images
in X', then (%) continues to hold. On the other hand this flip is cer-
tainly not an isomorphism in a neighbourhood of S and so the MMP
terminates by (8.2). O

8.1. lemmas.

Lemma 8.4. Let m: X — U be a projective morphism of normal
quasi-projective varieties. Let V be a finite dimensional affine linear
subspace of the space of Weil divisors on X and let A be a big Q-divisor
over U. Let C C LA(V) be a polytope.

If BL(A/U) does not contain any log canonical centres of (X,A),
for every A € C, then we may find a general ample Q-divisor A’ over
U and a translation

L: Ag(X) — AR(X),

by a divisor Q-linearly equivalent to zero over U such that L(C) C
La(V"), where V' = L(V).

Proof. Let A1, A,,...,A; be the vertices of the polytope C, and let
Z the union of the non kawamata log terminal locus of each (X, A;).
Then Z contains the non kawamata log terminal locus of (X, A), for
any A € C.

By assumption, we may write A ~g v C+ D, where C'is an ample R-
divisor over U and D > 0 does not contain any component of Z. Then
we may find rational functions f1, fa, ..., fx, real numbers ry, 79, ..., 7%
and an R-Cartier divisor £ on U such that
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Replacing C' by C+ > r;(fi) +7*E we may assume that A ~gy C'+D.
Replacing C' by C" < C sufficiently close to C and D by D + (C' — ")
we may assume that C' is Q-Cartier. Replacing C' by a Q-linearly
equivalent divisor over U, we may assume that C' is a general ample
Q-divisor over U. Given any rational number § > 0, let

L: AR (X) — AR(X) given by L(A)=A+6(C+D—A),

be translation by the divisor §(C'+ D — A) ~g ¢ 0. As C'+ D does not
contain Z, if 9 is sufficiently small then

Kx+L(A)=Kx+A;+06(C+D—A)=Kx+6C+ (A;—0A+0D),

is log canonical for every 1 < ¢ <. But then L(C) C L/(V’), where
A =6C and V' = L(V). O

Lemma 8.5. Let m: X — U be a projective morphism of normal
quasi-projective varieties. Let V' be a finite dimensional rational affine
subspace of the space of Weil divisors on X and let A be a general ample
Q-dwvisor over U. Let G > 0 be a Q-Cartier divisor whose support does
not contain any log canonical centre of (X, A), for any A € LA(V).

If there is a kawamata log terminal pair (X, Ag) then we may find a
general ample Q-divisor A" over U, a rational affine space V' and an
injective rational affine linear map

L: VA — VA/,

which preserves Q-linear equivalence over U such that L(LA(V)) is
contained in the interior of La/(V') and there is a divisor A € La(V'),
whose support contains the support of G such that Kx+A} is kawamata
log terminal.

Proof. Let W be the vector space spanned by the components of A,.
Since Ay € L(W) is a non-empty rational polytope, possibly replacing
Ap, we may assume that Kx + Ay is Q-Cartier.

As L4(V) is a rational polytope, possibly replacing V' by the span
of L4(V) we may assume that Kx + A is R-Cartier for ever A €
L4(V). By compactness, we may pick Q-divisors Ay, Ay, ..., A; such
that £4(V) is contained in the simplex spanned by Ay, Ag, ..., A; (we
do not assume that A; > 0). As

A —Ag=(Kx+A) — (Kx + Ay),
is Q-Cartier, we may pick a positive rational number ¢ > 0 such that
€(A; — Ag) + (1 —€)A,
is an ample Q-divisor over U, for 1 < i <[. Pick

A; ~Q,U G(Az — Ao) + (]_ — E)A,
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general ample Q-divisors over U. Let V' be the space spanned by V.
A and A’, the Q-divisors A}, A%, ..., A and the components of A and
G. If we define L: Vy — V}, by

and extend to the whole of V4 by linearity then L is an injective rational
linear map, which preserves Q-linear equivalence over U. If we set

Ay =Ag+ A,
then Kx + A is kawamata log terminal and Ay € L4/(V’). Note that
L is the composition of

Ly:Vy— V4 and Lo: V3 — Vi,
given by

As Li(LA(V)) € La(V"), it follows that if A € L4(V) then Kx +
L(A) is kawamata log terminal. Pick a Q-Cartier divisor H > 0 which
contains every component of every element of V’. Let V" be the span
of V and the components of H. Let § > 0 by any rational number and
let
T:Vy — VY,

be tranlsation by dH. If § > 0 is sufficiently small then T'(L(LA(V)))
is contained in the interior of £4/(V’) and T'(A}) contains the support
of G. Replacing L by T o L and V' by V" we are done. O

Lemma 8.6. Let m: X — U be a projective morphism of normal
quasi-projective varieties. Let (X, A = A+ B) is a log canonical pair,
where A >0 and B > 0.

If BL(A/U) does not contain any log canonical centres of (X,A)
and there is a kawamata log terminal pair (X, Ag) then we may find
a kawamata log terminal pair (X,A" = A"+ B'), where A" > 0 is an
ample Q-divisor, general over U, B' >0 and Kx + A ~qu Kx + A'.

Proof. By (8.4) we may assume that A is a general ample Q-divisor
over U. Let V be the vector space spanned by the components of A.
As A € L4(V) the result follows by (8.5). O

Lemma 8.7. Let m: X — U be a projective morphism of normal
quasi-projective varieties. Suppose the pair (X, A = A+ B) has kawa-
mata log terminal singularities, where A is big over U, B > 0, and
C is an R-Cartier divisor such that Kx + A is not nef over U, but
Kx + A+ C is nef over U.

Then there is a (Kx + A)-negative extremal ray R and a real number

0 < A <1 such that Kx + A + \C is nef over U but trivial on R.
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Lemma 8.8. Let @ : X — U be a projective morphism of normal
varieties and ¢ : X --+ Y be a rational map over U of Q-factorial
varieties such that ¢~ contracts no divisors. Assume that (X, A =
T + A+ B) is a purely log terminal pair such that T = AL, A >0 is
ample over U and B > 0. Assume moreover that T' = ¢, T # 0 and ¢
is Kx + A non-positive.

Then, (Y, ¢.A) is purely log terminal and we have that ¢.(A) ~r
T+ A"+ B" where (Y, T'+ A’ + B’) is purely log terminal, A" > 0 is a
general ample Q-divisor over U and B’ > 0.

Proof. As (X, A) is purely log terminal, ¢ is Kx + A-non-positive and
Lo AL = ¢, T =T, it follows immediately that (Y, ¢.A) is purely log
terminal.

Let A’ > 0 be a general ample Q-divisor over U such that A — ¢ tA’
is ample over U. Pick a A; ~gpy A — ¢, A" a general ample Q-divisor
over U. As the support of ¢ 1A’ does not contain 7', we have that

Kx+T+(1—e)A+e(p,'A+4)+B

is purely log terminal for any 0 < € < 1. By what we have allready
proved, it follows that Ky + 71"+ €A’ + (1 — €)p. A+ ¢.(eA; + B) is also
purely log terminal. Replacing e A’ by A" and (1 —€)p, A+ ¢, (€A + B)
by B’ the lemma follows. O

Lemma 8.9. Let m: X — U be a projective morphism of normal
quasi-projective varieties. Suppose that Kx + A is divisorially log ter-
minal, X is Q-factorial and ¢p: X --+Y is a (Kx+A) flip or divisorial
contraction.
If ' = ¢, A then
(1) ¢ is an isomorphism at the generic point of every log canonical
centre of Ky +T'. In particular (Y, T') is divisorially log terminal.
(2) If A = S+ A+ B, where S = LA, A is big over U and
B (A/U) does not contain any log canonical centres of Kx+A,
then ¢.S = LT'1, ¢.A is big over U and B, (¢, A/U) does not
contain any log canonical centres of Ky + I
In particular I' ~g i I where (Y,I") is kawamata log termi-
nal and I is big.

9. LOG TERMINAL MODELS

Definition 9.1. Let m: X — U be a projective morphism of normal
varieties. Let (X, A = A+ B) be a Q-factorial divisorially log terminal
pair and let D be an R-divisor, where A > 0, B > 0 and D > 0.
A nice model over U for (X,A), with respect to A and D, is any

birational map f: X --+Y over U, such that
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e =1 does not contract any divisors,

e the only divisors contracted by f are components of D,

o Y is Q-factorial,

o Ky + f.A is divisorially log terminal and nef over U, and

e B, (f.A/U) does not contain any log canonical centres of (Y,T' =

fel).

Lemma 9.2. Assume Theorem 5.12,_1, Theorem 7.24,_1 and Theo-
rem 7.20,,.

Let m: X — U be a morphism of normal projective varieties, where
X has dimension n. Let (X,A = A+ B) be a dwisorially log terminal
log pair and let D be an R-divisor, where A >0, B> 0 and D > 0.

If

(i) Kx +A~ry D >0,
(ii) (X, Q) is log smooth, where G is the support of A+ D, and

(iii) B+ (A/U) does not contain any log canonical centres of (X, G)
then (X, A) has a nice model over U, with respect to A and D.

Proof. We may write Kx + A ~ry D1 4+ Ds, where every component
of Dy is a component of LA and no component of D, is a component
of LAL. We proceed by induction on the number of components of Ds.

If Dy = 0 then pick any divisor H such that Ky + A + H is divi-
sorially log terminal and ample over U (for example take for H any
sufficiently ample, general ample Q-divisor over U). As the support
of D is contained in LA, (8.3) implies that (X, A) has a nice model
f: X --»Y over U, with respect to A and D.

Now suppose that Dy # 0. Let

A =sup{t e [0,1]|(X,A+tDs) is log canonical },

be the log canonical threshold of Dy. Then A > 0 and (X,© = A+ADy)
is divisorially log terminal and log smooth, Kx +© ~g y D+ ADs and
the number of components of D+ AD5 that are not components of LO_
is smaller than the number of components of D; + Dy that are not
components of LA, By induction there is a nice model f: X --» Y
over U for (X, 0), with respect to A and D. Since B, (f.A/U) does

not contain any log canonical centres of (Y, f.0),

Ky + fuA ~py foD1 + fiDo,
Ky + .0 = Ky + f.A + M. Do,

where Ky + f.© is divisorially log terminal and nef over U, and the

support of f,D; is contained in  f,A_, (8.3) implies that (Y, f.A) has

a nice model g: Y --» Z over U, with respect to f,A and f,D. The
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composition g o f: X --» Z is then a nice model over U for (X,A),
with respect to A and D. O

Lemma 9.3. Let m: X — U be a morphism of normal projective
varieties. Let (X,A = A+ B) be a divisorially log terminal log pair
and let D be an R-divisor, where A >0, B> 0 and D > 0.

If every component of D 1is either semiample or a component of
B((Kx +A)/U) and f: X --» Y is a nice model over U for (X, A),
with respect to A and D, then f is a log terminal model for (X, A) over
U.

Proof. By hypothesis the only divisors contracted by f are components
of B((Kx +A)/U). Since the question is local over U, we may assume
that U is affine. Since B, (f.A/U) does not contain any log canonical
centres of (Y,I' = f.A), we may find Ky + 1" ~py Ky + ' where
Ky +I" is kawamata log terminal and I is big over U. (6.10) implies
that Ky + I is semiample.

Ifp: W — X and q¢: W — Y resolve the indeterminacy of f then
we may write

p(Kx+A)+ E=q¢"(Ky +T)+F,

where £ > 0 and F' > 0 have no common components, and both £
and F' are exceptional for q.

As Ky +T is semiample, B((¢*(Ky+I")+F)/U) and F' have the same
support. On the other hand, every component of E is a component of
B((p*(Kx+A)+ E)/U). Thus E = 0 and any divisor contracted by f
is contained in the support of F'. Therefore f is a log terminal model

of (X, A). O

Lemma 9.4. Theorem 5.12,_1, Theorem 7.24,_1 and Theorem 7.20,
imply Theorem 5.12,.

Proof. Pick any ample R-Cartier divisors H; on U such that
KX—f—A—f-?T*Hl NRD—I—TF*HQ ZO

Replacing A by A + 7n*H; and D by D + 7*H,, we may assume that
Kx +A ~g D > 0. By (8.6) we may assume that A = A + B,
where A is a general ample Q-divisor over U and B > 0. By (9.6)
we may assume that D = M + F', where every component of F is a
component of the stable fixed divisor and if L is a component of M
then mL is mobile. Pick a log resolution f: Y — X of the support
of D and A, which resolves the base locus of each linear system |mL],
for every component L of M. Let I' be the divisor defined in (9.10).

By definition of I', every component of the exceptional locus belongs
78



to B((Ky +I')/U). Replacing I' by an R-linearly equivalent divisor,
we may assume that I' contains an ample divisor over U. In particular,
replacing mm* L by a general element of the linear system |mz*L|, we
may assume that Ky + 1" ~gy N + G, where every component of N is
semiample, every component of G is a component of B((Ky +I")/U),
and (Y,I' + N + G) is log smooth. By (9.10), we may replace X by Y
and the result follows by (9.2) and (9.3). O

9.1. lemmas.

Lemma 9.5. Let D be an integral Weil divisor on a normal variety
X.

Then the stable base locus coincides with the usual definition of the
stable base locus.

Proof. Let

|IDljg={C >0|C ~gD}.
Let R be the intersection of the elements of |D|g and let @) be the
intersection of the elements of |D|g. It suffices to prove that @ = R.
As |D|g C |Dl|g, it is clear that R C Q.

Suppose that x ¢ R. We want to show that x ¢ ). Replacing
X by the blow up of X at x, we may assume that there is a divisor
C which is not a component of R and it suffices to prove that C' is
not a component of ). We may find D’ € |D|g such that C is not a
component of D’. But then

D = D/ —+ Z?”@(.ﬂ),
where f; are rational functions on X and r; are real numbers. Let V' be
the real subspace of the vector space of all Weil divisors on X spanned

by the components of D, D" and (f;) and let W be the span of the (f;).
Then W C V are defined over the rationals. Set

P={D"eV|D' >0, miltce(D") =0, D" —D €W} C |Dlz.

Then P is a rational polyhedron. As D' € P, P is non-empty, and so
it must contain a rational point D”. We may write

D” = D -+ Z S,;(fi)7

where s; are real numbers. Since D” and D have rational coefficients,
it follows that we may find s; which are rational. But then D" € |D]|g,
and so C' is not a component of D”, nor therefore of Q). O

Proposition 9.6. Let m: X — U be projective morphism of normal
varieties and let D > 0 be an R-divisor. Then we may find R-divisors

M and F such that
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(1) M >0 and F > 0,

(2) D ~py M+ F,

(3) every component of F' is a component of B(D/U), and

(4) if B is a component of M then some multiple of B is mobile.

We need two basic results:

Lemma 9.7. Let X be a normal variety and let D and D’ be two
R-divisors such that D ~p D'.

Then we may rational functions f1, fa, ..., fr and real numbersry,ro, . ..

which are independent over the rationals such that
D=D+> r(f)

In particular every component of (f;) is either a component of D or of
D'.

Proof. By assumption we may find f1, fo, ..., fr and real numbers ry, 7o, . ..

such that
k
i=1

Pick k£ minimal with this property. Suppose that the real numbers r;
are not independent over Q. Then we can find rational numbers d;,
not all zero, such that

Possibly re-ordering we may assume that dy # 0. Multiplying through
by an integer we may assume that d; € Z. Possibly replacing f; by
f;!, we may assume that d; > 0. Let d be the least common multiple
of the non-zero d;. If d; # 0, we replace f; by ffl /di (and hence r; by
d;r;/d) so that we may assume that either d; = 0 or 1. For 1 <7 < k,
set

_filfe ifdi=1
=N ifdi=o.

k—1

D=D'+> rilg)

=1

Then

which contradicts our choice of k.
Now suppose that B is a component of (f;). Then

multp(D) = multp(D’) + Z Tin;,
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where n; = multg(f;) is an integer and n; # 0. But then one of
multg(D)—multp(D’) # 0, so that one of mult 5(D) and mult g(D’) # 0
must be non zero. d

Lemma 9.8. Let m: X — U be a projective morphism of normal
varieties and let 0 < D' ~gy D > 0 be two R-divisors on a normal
variety X with no common components.

Then we may find D" € |D/Ulg such that a multiple of every com-
ponent of D" is mobile.

Proof. Pick ample R-divisors on U, H and H’ such that D + 7*H ~g
D'+ 7*H" and D +7*H and D' + 7*H' have no common components.
Replacing D by D + n*H and D' by D' 4+ n*H’, we may assume that
D' ~r D.

We may write

D'=D+> r(f)=D+R,

where 7; € R and f; are rational functions on X. By (9.7) we may
assume that every component of R is a component of D + D'

We proceed by induction on the number of components of D + D’.
If 1,49, ...,q are any positive rational numbers then we may always
write

C'=C+Q= C"‘Z%’(fi)»
where C' > 0 and C" > 0 have no common components. But now if
we suppose that ¢; is sufficiently close to r; then C' is supported on D
and C’ is supported on D’. We have that mC ~ mC" for some integer
m > 0. By Bertini we may find C” ~g C such that every component

of C" has a multiple which is mobile. Pick A > 0 maximal such that
Dy =D —\XC >0and D} =D — X" > 0. Note that

0 S Dl ~R Dll Z 0
are two R-divisors on X with no common components, and that D+ D]
has fewer components than D + D’. By induction we may then find
Dlll S |J)1|]R7
such that a multiple of every component of Df is mobile. But then
D" =\C" + DY € |Dlg,
and every component of D" has a multiple which is mobile. O
Proof of (9.6). We may write D = M + F, where every component
of F'is contained in B(D/U) and no component of M is contained in

B(D/U). We proceed by induction on the number of components B of

M such that no multiple of B is mobile.
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Fix one such component B. It suffices to find D" € |D/U|g such
that B is not a component of D’ and with the property that if B’ is a
component of D’ such that no multiple of B’ is mobile, then B’ is also
a component of D. Now we may find Dy € |D/U|r such that B is not
a component of D;. Cancelling common components of D; and D, by
(9.8), one sees that D ~gy D' = D"+ E where every component of D"
has a multiple which is mobile and Supp £ C Supp D N Supp D;. U

Lemma 9.9. Let m: X — U be a proper morphism of normal quasi-
projective varieties. Let D be a R-Cartier divisor on X and let D’ be
its restriction to the generic fibre of .

If D' ~g B" > 0 for some R-divisor B' on the generic fibre of ,
then there is a divisor B on X such that D ~g gy B > 0.

Proof. Taking the closure of the generic points of B’, we may assume
that there is an R-divisor By > 0 on X such that the restriction of B;
to the generic fibre is B’. As

D' — B ~y 0,
it follows that there is an open subset U; of U, such that
(D = By)|v; ~r 0,

where V; is the inverse image of U;. But then there is a divisor G on
X such that

D - Bl ~R G,
where Z = w(Supp @) is a proper closed subset. As U is quasi-
projective, there is an ample divisor H on U which contains Z. Possibly
rescaling, we may assume that F' = 7*H > —G. But then

D~ (B1+ F+G)—F,

so that
D~gpy (Bi+F+G)>0. O

Lemma 9.10. Let 7: X — U be a proper morphism of normal quasi-
projective varieties. Let (X, A) be a kawamata log terminal pair. Let
f:Z — X be any log resolution of (X, A) and suppose that we write

Kz +®0=f"(Kx+A)+ E,

where ®y > 0 and E > 0 have no common components, f,®q= A and
E is exceptional. Let ' > 0 be any divisor whose support is equal to
the exceptional locus of f.
Then we may find n > 0 such that if ® = &y + nF then
hd f*CI) - A;
o Ky + ® is kawamata log terminal,
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e if A is big over U then so is ®, and

e the log terminal models (respectively weak log canonical models)
over U of Kx + A and the log terminal models (respectively
weak log canonical models) over U of Kz + ® are the same.

Proof. Everything is clear, apart from the fact that if ¢: Z --+» W is a
log terminal model (respectively weak log canonical model) over U of
K7+ ® then it is a log terminal model (respectively weak log canonical
model) over U of Kx + A.

Let ¢: X --» W be the induced birational map and set ¥ = ¢,®.
By what we have already observed, possibly blowing up more, we may
assume that ¢ is a morphism. By assumption if we write

K;+®=¢"(Ky +9) + G,

then G > 0 and the support of G is the full ¢-exceptional locus (re-
spectively G is exceptional). Thus

(Ex+A)+ E+nF =¢"(Kw + V) +G.

By negativity of contraction (cf. (2.7)) G — E — nF > 0, so that in
particular ¢ must contract every f-exceptional divisor and ¢~* does not
contract any divisors. But then, v is a log terminal model (respectively
weak log canonical model) over U by (?7). O

10. FINITENESS OF MODELS, THE BIG CASE

Lemma 10.1. Assume Theorem 5.12,.

Let m: X — U be a projective morphism of normal quasi-projective
varieties, where X has dimension n. Suppose that there is a kawamata
log terminal pair (X, Ay). Let V' be a finite dimensional rational affine
subspace of the space of Weil divisors on X. Fiz a general ample Q-
divisor A over U. Let C C L4(V') be a rational polytope. Suppose that
either

(1) if A € C then Kx + A is m-big, or
(2) Theorem 7.23, holds.

Then there are finitely many rational maps ¢;: X --+Y; over U,
1 < i <k, with the property that if A € CNEa,(V) then there is an
index 1 < i < k such that ¢; is a log terminal model of Kx + A over
U.

Proof. As L4(V) is a rational polytope, we may assume that C spans
V4. We proceed by induction on the dimension of V.
First suppose that dim V' > 0 and that there is a divisor A € C such

that Kx + Ay ~ry 0. Pick © € C, © # Ay. Then there is a divisor A
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on the boundary of C such that
O —Ag=MNA—Ay),
for some 0 < A < 1. Now

Kx+0=\NEKx+A)+(1—-XN(Kx+ Ay)
NR,U/\<KX + A)

In particular A € €4 (V) if and only if © € €4 (V) and (11.7) implies
that Ky + A and Kx + © have the same log terminal models. On
the other hand the boundary of C is contained in finitely many affine
hyperplanes defined over the rationals, and we are done by induction
on the dimension of V' in this case.

We now prove the general case. By (8.5), we may assume that Kx+A
is kawamata log terminal for all A € C and that if dimV' > 0 then C
is contained in the interior of £4(V'). Since L£4(V') is compact and
CN&ar(V) is closed, it suffices to prove this result locally about any
divisor Ag € C N E4,(V). By assumption there is a divisor Dy > 0
such that Kx +A ~g Dy and so, as we are assuming Theorem 5.12,,,
there is a log terminal model ¢: X --+ Y over U for Kx + Ag. In
particular we may assume that dim V' > 0.

As ¢ is (Kx + Ap)-negative there is a neighbourhood Cy of Aq in
L4(V), which we may assume to a be rational polytope, such that for
any A € Cy and any ¢-exceptional divisor E contained in X, we have
a(E, X,A) <a(BE,Y,p.A). If Kx+Ayis m-big then, possibly shrinking
Co, we may assume that K x+A is m-big for all A € Cy. Since Ky +¢,.Aq
is kawamata log terminal and Y is Q-factorial, possibly shrinking Cy, we
may assume that Ky + ¢, A is kawamata log terminal for all A € Cy. In
particular, replacing C by Cy, we may assume that the rational polytope
C' = ¢.(C) is contained in L4, 4(W), where W = ¢,V. By (8.4), there
is a rational affine linear map L: W — V' and a general ample Q-
divisor A’ over U such that L(C") C L4(V’). Replacing V}, by the span
of L(C'), we may assume that dimV’ < dimV. By (??) and (10.7),
any log terminal model of (Y, ¢.A) over U is a log terminal model of
(X,A) over U, for any A € C. Replacing X by Y we may therefore
assume that Kx + A is m-nef.

By (6.10) Kx + Ag has an ample model ¢: X — Z over U. In
particular Kx + A¢ ~g,z 0. By what we have already proved there
are finitely many birational maps ¢;: X --» Y; over Z, 1 < ¢ < k,
such that for any A € C N &4y, there is an index ¢ such that ¢; is a
log terminal model of Kx + A over Z. But then, since there are only

finitely many models Y;, possibly shrinking C, (10.8) implies that if
84



A € C then there is an index 1 < ¢ < k such that ¢; is a log terminal
model for Kx + A over U. O

Lemma 10.2. Assume Theorem 5.12,.

Let m: X — U be a projective morphism of normal quasi-projective
varieties, where X has dimension n. Suppose that there is a kawamata
log terminal pair (X, Ag). Let V' be a finite dimensional rational affine
subspace of the space of Weil divisors on X. Fix a general ample Q-
divisor A over U. Let C C LA(V') be a rational polytope. Suppose that
either

(1) if A € C then Kx + A is w-big, or
(2) Theorem 7.23, holds.

Then we can find finitely many rational maps ¢;: X --+Y; over U,
1 <@ <k, such that if ¢: X --»Y is a log terminal model of Kx + A,
where A € C, then there is an index 1 < i < k and an isomorphism
n:Y; — Y such that ¢ =no ¢;.

Proof. Pick Q-Cartier divisors By, Bs, ..., B; > 0 which generate the
group of Weil divisors modulo relative numerical equivalence. By (8.5)
we may assume that there is a rational number € > 0 such that eC' < A
and Ky +A+eC is kawamata log terminal, where C' = > B;. Further,
in case (1), possibly replacing € by a smaller number, we may assume
that if A € C then Kx + A — eC' is m-big. Let W be the rational affine
space spanned by V and the divisors By, Bo, ..., B;. If we set

C'={A+> bBi|AeCand b <e},

then C" C L4(W) is a rational polytope and if A" € C’ then Kx + A’
is kawamata log terminal and 7-big in case (1).

By (10.1) there are rational maps ¢;: X --» Y; over U, 1 < i <k,
such that given any © € C'NE4 (W), we may find an index 1 <i < k
such that ¢; is a log terminal model of Ky + © over U. Pick A €
C and let ¢: X --» Y be a log terminal model of Kx + A over U.
Let G; = ¢.B; and I' = ¢,A. Then the divisors G, s, ..., G, span
the group of Weil divisors of ¥ modulo relative numerical equivalence.
Since Y is Q-factorial, we may find rational numbers by, bo, . .., b; such
that G = >_ b;G; is ample over U. If we set B = ) b; B; then, possibly
replacing G by a small multiple, we may assume that |b;| < e and ¢ is
(Kx + A+ B)-negative. But then A+ B € C'NE4 (W) and ¢ is a log
terminal model for Kx + A+ B over U. As Ky +I'+ G is ample over
U, (10.9) implies that there is an index 1 < < k and an isomorphism
n:Y; — Y such that ¢ =no ¢;. U

Lemma 10.3. Assume Theorem 5.12,.
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Let m: X — U be a projective morphism of normal quasi-projective
varieties, where X has dimension n. Suppose that there is a kawamata
log terminal pair (X, Ag). Let V' be a finite dimensional rational affine
subspace of the space of Weil divisors on X. Fiz a general ample Q-
divisor A over U. Let C C L4(V) be a rational polytope. Suppose that
either

(1) if A € C then Kx + A is w-big, or
(2) Theorem 7.23, holds.

Then we can find finitely many rational maps ¢;: X --+Y; over U,
1 <1<k, such that if p: X --+Y is a Q-factorial weak log canonical
model of Kx + A, where A € C, then there is an index 1 < i < k and
an isomorphism n:Y; — 'Y such that ¢ = n o ¢;.

Proof. By (8.5) we may assume that if A € C then Ky + A is kawamata
log terminal. Possibly enlarging V', we may assume that V' is the vector
space spanned by a finite set of prime divisors I. Let J be the set
of prime divisors contracted by any log terminal model of Ky + A
over U, for any divisor A € L4(V). By (10.2) we may find finitely
many birational maps ¢;: X --» Y;, 1 < ¢ < k, over U such that
if : X --» Y is a log terminal model of Kx + A over U, for some
A € L4(V), then there is an index 1 < i < k and an isomorphism
n:Y; — Y such that ¢ = no ¢;. In particular the set J is finite. Let
W be the vector space spanned by I U J. Note that the set of prime
divisors contracted by any log terminal model of Kx + A over U, for
any A € L4(W), is also equal to J. Thus replacing V' by W we may
assume that J C 1.

Pick A € L4(V) and let ¢: X --» Y be any Q-factorial weak log
canonical model of Kx + A over U. Pick F > 0, with support equal
to the exceptional locus of ¢ such that Ky + A + F is kawamata log
terminal. In particular A + F € L4(V). On the other hand ¢ is
negative with respect to Ky + A + F' and

Ky +T =¢.(Kx +A) = ¢ (Kx + A+ F),

is nef over U. Thus ¢ is a log terminal model of Kx + A + F over U
and so there is an index 1 < ¢ < k and an isomorphism 7: Y; — Y

such that ¢ = no ¢;. U
Lemma 10.4. Theorem 5.12,, implies Theorem 7.22,.
Proof. This is (1) of (10.3). O

In terms of induction, we will need a version of Theorem 7.24,, locally
around the locus where Kx + A is not kawamata log terminal. To this

end we need a version of (8.2) for a convex set of divisors:
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Proposition 10.5. Assume Theorem 5.12,, and Theorem 7.22,.

Let (X,Aqg = S+ A+ By € E4) be a log smooth projective purely
log terminal pair of dimension n, where LAgs = S, A is ample and
B > 0. Let Vi be the vector space of Weil divisors on X generated
by the components of By. Fix a general ample divisor H such that
Kx + Ao+ H is ample, and let V' be the translate by S + A, of the
vector space spanned by Vo and H. Given any polytope F' in V, the
cone C(F) over F (with vertex Aq) is the polytope spanned by F and
Ag.

Pick a constant o > 0 such that

F={A)y+E+HeV||E|<a,E€Vy} C N4

and let Co = C(F). If Kx + Ay does not have a log terminal model
then there is a countable collection of polytopes P; and birational maps
¢i: X --+Y; such that

(1) Py N'P; =@ for any i # j such that P; and P; are of mazimal
dimension,

(2) P; € Wy,

(3) for any A= Ao+ E+H € F, a (Kx+ Ay)-MMP with scaling
of E+ H s given by

X-->Y,--»Y,-->Y, -

for appropriate indices i ,
(4) for all e > 0, the set

{iE[’HA:A0+t(E+H)Epi,t>€},

s finite, and
(5) if C; denotes the cone over P;, then

Ci—{A} = J{PiIP;cC}
Proof. By assumption the set
Po = CoN Ny,

does not contain Ag. By (??), Py is a polytope. Let ¢p: X --» Y5 = X
be the identity map. Note that Cy is indeed the cone over P,.
Suppose that we have defined Py, Pa, ..., Py, satisfying (1), (2) and
a modified version of (3), where we stop the MMP in (3) when A lies on
the boundary of UP;. Let F; ; be the faces of P;, whose associated cones
are of maximal dimension. For any such face, let F' = F; ; and let Cy1y
be the corresponding cone. If P; is of maximal dimension, we discard

F whenever Cy11 = C;, for some i < k. Let R be a (Kx + Ap)-extremal
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ray of Y;, which cuts out F. Let Y; --» Y;; be the corresponding step
of the (Kx + Ag)-MMP.

Let Py1 be the nef cone of Y,y intersected with C.;. As before
P11 is a polytope that, by assumption, does not contain A.

Thus, by induction, we may assume that we have constructed a
countable set of polytopes P; and rational maps ¢;: X --+ Y, satis-
fying (1), (2) and the modified version of (3) described above. Note
that property (4) follows from Theorem 7.22,, and (3) and (5) follow
from (4), since each C; contains infinitely many P;. O

Lemma 10.6. Assume Theorem 7.24,_1, Theorem 5.12, and Theo-
rem 7.22,. Let (X,Ag = S+ A+ By) be a purely log terminal pair,
where X is projective of dimension n, A is ample, LDgs = S and
By > 0. Suppose that Kx + Aq is pseudo-effective and S is not a
component of Nyo(Kx + Ay).

Let Viy be the span of the components of By. Then we may find an
ample divisor H, a positive constant «, and a log pair (W, R) with the
following properties. Let V' be the translate by S+ A of the vector space
of Weil divisors on X generated by H and the components of By.

Then for every B € Vy such that

|B — Byl < at,

for any t € (0,1], we may find a log terminal model ¢p: X --+» Y of
(X,A =S+ A+ B+tH) which does not contract S and such that the
pairs (W, R) and (Y, T = ¢.S) have isomorphic neighbourhoods of R
and T

Proof. Suppose not. Passing to a log resolution, we may assume that
(X, A) is log smooth cf. (9.10). Using the notation established in
(10.5) and possibly relabelling, by assumption there is no Cj such that
for any two elements A; and A, in Cg, the corresponding models have
isomorphic neighbourhoods of 7. Hence we may find a sequence of
polytopes P;, such that the corresponding cones are nested C; C C;_1,
and moreover the corresponding Y; are not eventually isomorphic in a
neighbourhood of T'. By compactness of F', we may find A € F such
that (Ao, A]NC; # @ for every i. By (3) of (10.5), the corresponding
(Kx 4+ Ap)-MMP with scaling of E+ H = A — A is not eventually an
isomorphism in a neighbourhood of S and this contradicts (8.2). O

10.1. Lemmas.

Lemma 10.7. Let m: X — U be a projective morphism of normal
quasi-projective varieties. Suppose that Kx + A is divisorially log ter-

minal and let ¢: X --+Y be a birational map over U such that ¢~
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does not contract any divisors, Ky + ¢/ is divisorially log terminal

and a(F, X, A) < a(F,Y, ¢.A) for all p-exceptional divisors ' C X.
If o: Y --» Z is a log terminal model of (Y,p.A) over U, then

n=wo¢: X --» Z is a log terminal model of (X, A) over U.

Proof. Clearly n~! contracts no divisors and Z is Q-factorial and K, +
n«A is nef. By (?7?), it suffices to show that a(F, X, A) < a(F, Z,n.A)
for all n-exceptional divisors F' C X.

Let p: W — X, ¢ W — Y and r: W — Z be a common
resolution. As ¢ is a log terminal model of (Y, $.A) we have that
¢ (Ky + ¢A) —r*(Kz +n.A) = E > 0 and its support contains the
exceptional divisors of ¢. Since

P(Kx +A)—r"(Kz+nA) =p"(Kx +A) = ¢"(Ky +.A)+ E
the assertion follows easily. O

Corollary 10.8. Let m: X — U be a projective morphism of normal
quasi-projective varieties. Let V' be a finite dimensional affine subspace
of the real vector space of Weil divisors on X, which is defined over the
rationals. Fix a general ample Q-divisor A over U. Let (X,/Aq) be a
kawamata log terminal pair, let f: X — Z a morphism over U such
that Ay € Vi and Kx + Ay = f*H, for some ample divisor H. Let
¢: X --+Y be a birational map over Z.

Then there is a neighbourhood Py of Ag in Lao(V') such that for all
A€ PR

e ¢: X --»Y is a log terminal model of Kx + A over Z if and
only if ¢ is a log terminal model of Kx + A over U.

Lemma 10.9. Let 7: X — U be a projective morphism of normal
quasi-projective varieties.

If Kx+ A is kawamata log terminal then the ample model of Kx + A
over U 1is unique, if it exists at all.

Proof. Let Z; and Z3 be ample models for K x+A over U. By definition
we may find log terminal models ¢;: X --+Y; for Kx + A over U and
morphisms f;: Y; — Z; over U such that, Ky, + I'; ~g f7H;, where
H; is an ample divisor over U and I'; = ¢; A, for i =1 and 2.

Suppose that g: W — X resolves the indeterminacy of ¢;, for i =1
and 2. Let W > 0 be the divisor on W whose existence is guaranteed
by (9.10). Then (Y;,I';) is also a log terminal model for Ky + VU, for
t=1and 2.

Thus replacing (X, A) by (W, ¥) we may assume that ¢; is a mor-

phism over U. In particular, there are divisors E; > 0, exceptional for
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¢, such that

Kx + A= ¢} (Ky, + 1) + Ei,
for i = 1 and 2. As Ky, + I'; is nef, for « = 1 and 2, negativity of
contraction implies that Fy = F,. In particular gi H; ~g g5 Hs, where
gi = fi o ¢; and so 21 ~ Zs. O

11. NON-VANISHING

We follow the general lines of the proof of the non-vanishing theorem,
see for example Chapter 3, §5 of [10]. In particular there are two cases:

Lemma 11.1. Assume Theorem 5.12,. Let (X, A) be a projective, log
smooth, kawamata log terminal pair of dimension n, such that Kx + A
is pseudo-effective and A — A > 0 for an ample Q-divisor A. Suppose
that for every positive integer k such that kA is integral,

h0<X, OX(I_mk(KX + A)—l + kA)))

is a bounded function of m.
Then there is an R-divisor D such that Kx + A ~r D > 0.

Proof. By (11.6) it follows that Kx + A is numerically equivalent to
Ny(Kx+A). Since N, (Kx +A)— (Kx +A) is numerically trivial and
ampleness is a numerical condition, it follows that

A"=A+ Ny,(Kx +A)— (Kx + A),
is ample and numerically equivalent to A. Thus if A" ~x A” is general
Kx+A'=Kx+ A +(A-A),
is kawamata log terminal and numerically equivalent to Ky + A, and
Kx + A" ~g N,(Kx +A) > 0.

Thus by Theorem 5.12,,, Kx+A' has a log terminal model ¢: X --» Y,
which, by (11.7), is also a log terminal model for Kx + A. Replacing
(X,A) by (Y,I') we may therefore assume that Kx + A is nef and the
result follows by the base point free theorem, cf. (?7). O

Lemma 11.2. Let (X, A) be a projective, log smooth, kawamata log
terminal pair such that A = A+ B, where A is a general ample Q-
divisor and B > 0. Suppose that there is a positive integer k such that
kA is integral and

hO(X7 OX(I_mk(KX + A)J + kA)))

is an unbounded function of m.
Then we may find a projective, log smooth, purely log terminal pair

(Y,T) and a general ample Q-divisor C' on'Y', where
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e Y is birational to X,

e ['—C>0,

o T'= LI is an wrreducible divisor, and

e I' and N,(Ky +T') have no common components.

Moreover the pair (Y,T') has the property that Kx + A ~g D >0 for
some R-divisor D if and only if Ky + 1T ~r G > 0 for some R-divisor
G.

Proof. Pick m large enough so that

WO(X, Ox(Lmk(Kx + A)o + kA)) > (k”; ") .

By standard arguments, given any point x € X, we may find an effec-
tive divisor which is R-linearly equivalent to

Lm]{?(KX + A)J + kA,

of multiplicity greater than kn at x. In particular, we may find an
R-divisor
OﬁHme(KX+A)+A,

of multiplicity greater than n at x. Given ¢ € [0, m], consider
m—t 1
(t+ 1)(Kx +A) :KX—I—TA—l—Bth(KX%—A—I—EA)

m—t t
~p Kx +——A+B+—H
m m

Fix 0 <e<1,let A= (¢/m)A and u =m — e. We have:
(1) Kx + A is kawamata log terminal,
(2) Ay > A’ for any t € [0, u] and
(3) the locus of log canonical singularities of (X, A,) contains a
very general point z of X.
Let m: Y — X be a common log resolution of (X,A;). We may
write
Ky + ¥, = "(Kx + Ay) + E,
where E; > 0 and ¥; > 0 have no common components, 7, ¥, = A,
and FE; is exceptional. Pick an exceptional divisor F' > 0 and a positive
integer [ such that [(7*A’—F') is very ample and let [C' be a very general
element of the linear system |I(7* A’ — F)|. For any t € [0, u], let

@t:\pt—ﬂ'*A/—’—C‘f‘FNR \Ijt and Ft:q)t_q)t/\NU(KY+q)t)'

Then properties (1-3) above become

(1) Ky + Ty is kawamata log terminal,
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(2) I, > C, for any t € [0, u], and
(3) (Y,T',) is not kawamata log terminal.

Moreover

(4) (Y,T) is log smooth, for any ¢t € [0, u], and
(5) Ty and N,(Ky + I';) do not have any common components.

Let
s =sup{t € [0,u]| Ky +I'; is log canonical }.
Note that

= (t+ 1)N, (7" (Kx + A)) + E;.
Thus Ky + I'; is a continuous, piecewise linear function of ¢. Setting
[' =T, we may write

r=T+C+ DB,

where L'y =T, C'is ample and B’ > 0. Possibly perturbing I', we may
assume that 7" is irreducible, so that Ky 41" is purely log terminal. [

We will need the following consequence of Kawamata-Viehweg van-
ishing:
Lemma 11.3. Let (X,A = S+ A+ B) be a Q-factorial projective
purely log terminal pair and let m > 1 be an integer. Suppose that
(1) S = LA is irreducible,

)

) m(Kx + A) is Cartier in a neighbourhood of S,

) WS, O5(m(Kx +A))) > 0,

) Kx + G + B is kawamata log terminal, where G > 0,
) Ar~g (m—1)tH + G for some t,

) Kx + A+ tH is big and nef.

Then (X, Ox(m(Kx + A))) > 0.

Proof. Considering the long exact sequence associated to the restriction
exact sequence,

0—> Ox(m(Kx+A>—S) — Ox(m(Kx+A)) — Os(m(Kx+A)) — O,
it suffices to observe that

HY(X,O0x(m(Kx +A)—S)) =0,
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by Kawamata-Viehweg vanishing, since
mKx+A)—S=m—-1)(Kx+A)+Kx+A+B
~gKx+G+B+(m—1)(Kx+A+tH)
and Kx + A+ tH is big and nef. O

Lemma 11.4. Theorem 7.25,_1, Theorem 7.24,,_1, Theorem 5.12,, and
Theorem 7.22,, imply Theorem 7.23,.

Proof. By (9.9), it suffices to prove this result for the generic fibre of
U. Thus we may assume that U is a point, so that X is a projective
variety.

By (9.10) we may assume that (X, A) is log smooth. By (8.6) we
may assume that A = A 4+ B, where A > 0 is a general ample Q-
divisor and B > 0. By (11.1) and (11.2), we may therefore assume
that A = S+ A+ B, where (X, A) is a log smooth purely log terminal
pair, A is a general ample Q-divisor, B > 0 and LAJ = S is irreducible
and not a component of N,(Kx + A).

Let H be the ample divisor on X and « > 0 be the constant whose
existence is guaranteed by (10.6). Possibly replacing A by an R-linearly
equivalent divisor, we may assume that there is a positive constant e
such that A — eH > 0. Let Vy be the vector space of Weil divisors
spanned by the components of B and let V' be the translate by S + A
of the span of Vj and H.

Given t > 0 and any B’ € Vg, ||B' — B|| < ot, let

UV=5+A+ B +tH.

Let ¢: X --+ Y be the log terminal model of Kx + ¥, whose existence
is guaranteed by (10.6). Let T" be the strict transform of S, let I' = ¢, ¥
and define © by adjunction

(KY + F)‘T == KT + O.

By linearity we may formally extend the assignment ¥ — O to a
rational affine linear map

L:V — W,

to the whole of V', where W is an appropriate finite dimensional rational
affine space of Weil divisors on 7. In particular, L(A) is big and by
(10.6) it follows that Kr + L(A) is nef.

Now by taking A" = ¢, A|r, there is a rational polytope Cr C Nas
containing L(A) such that K + © is kawamata log terminal for any
© € Cr, by (8.5) and (??). Moreover, we can find a rational polytope

C C L4 containing A such that L(C) = Cr.
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We may find a positive integer k such that if r(Ky + I") is integral
then rk(Ky + I') is Cartier in a neighbourhood of T. By Kollar’s
effective base point free theorem, [8], we may find a positive integer M’
such that if D is a nef Cartier divisor on T such that D — (Kr + )
is nef and big, where Kr + ) is kawamata log terminal, then M’'D is
base point free, where M’ does not depend on either D or on €. Set
M = kEM’. Suppose that © € Cr. Then © > A’, so that we may write

Kr+0 ~gr Kr+G+ 6,

where G is ample and K1 + G + ©' is kawamata log terminal. Now if
rk(Ky + )| = rk(Kr + ©), then

T]C(KT + @) - (KT + @/> ~R (T]C - 1)(KT + @) + G

Thus, if r(Ky +I') is integral, then Mr(Kr + ©) is base point free.
By (??), there are real numbers r; > 0 with Y 7, = 1, positive
integers p; > 0 and Q-divisors A; € C such that

pi(Kx + Ay),
is integral,
KX +A = Zri(KX + Al),

and
1A — A <=
mi

where m; = Mp;. Let ©; = L(4,).
By our choice of k, p;k(Kr+ ©;) is Cartier. So, m;(Kr+ ©;) is base
point free and so

hO(T7 OT(mZ(KT + @z> ) > 0.

)

(11.3) implies that h°(Y, Oy (m;(Ky + T;))) > 0, where T; = ¢, A;.
Notice that the pair (Y, T'; = T+ ¢, A+ ¢, B) clearly satisfies conditions
(1-4) of (11.3). We then let ¢t = ¢/m; so that ¢, A > (m; — 1)t¢.H and
condition (6) of (11.3) holds. Conditions (5) and (7) of (11.3) are now
easy to check.

As ¢ is (Kx + A; +tH)-negative, it is certainly (Kx + A;)-negative.
But then

In particular there is an R-divisor D such that

Kx+A=>Y ri(Kx+2A;)~pD>0. O
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11.1. Lemmas. We will need some definitions and results from [13].

Definition-Lemma 11.5. Let X be a smooth projective variety, B be
a big R-divisor and let C' be a prime divisor. Let

oc(B) = inf{ mult¢(B’) | B' ~¢ B,B' > 0}.

Then o¢ is a continuous function on the cone of big divisors.
Now let D be any pseudo-effective R-divisor and let A be any ample
Q-divisor. Let
O'C(D) = 11_1}5 0'0<D + GA)

Then oc(D) ezists and is independent of the choice of A.

There are only finitely many prime divisors C such that oc(D) > 0
and the R-divisor N,(D) =Y, 0c(D)C is determined by the numeri-
cal equivalence class of D.

Proof. See §I11.1 of [13]. O

Proposition 11.6. Let X be a smooth projective variety and let D be
a pseudo-effective R-divisor. Let B be any big R-divisor.

If D is not numerically equivalent to N, (D), then there is a positive
integer k and a positive rational number 5 such that

RY(X, Ox(LmDJ+ LkBJ)) > fm, for all m > 0.

Proof. Let A be any integral divisor. Then we may find a positive
integer k such that

hO(X, Ox(LkBL1— A)) > 0.

Thus it suffices to exhibit an ample divisor A and a positive rational
number 5 such that

RY(X, Ox(LmDJ+ A)) > fm for all m > 0.

Replacing D by D — N,(D), we may assume that N,(D) = 0. Now
apply (V.1.12) of [13]. O

Lemma 11.7. Let w: X — U be a projective morphism of normal
quasi-projective varieties. Let ¢: X --» Y be a birational map over
U such that ¢~ does not contract any divisors. Suppose that Kx +
A" ~g iy p(Kx + A) for some p > 0, where both Kx + A and Kx + A’
are log canonical (resp. Y is Q-factorial, Kx + A =y Kx + A’ and
both Kx + A and Kx + A’ are divisorially log terminal). Set T’ = ¢, A
and I'" = ¢, A

Then Y is a weak log canonical model (respectively a log terminal
model) for Kx + A over U if and only if it is a weak log canonical
model (resp. a log terminal model) for Kx + A" over U.
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Proof. Note first that either Ky +I" ~g iy u(Ky+I) or Y is Q-factorial.
In particular Ky + I is R-Cartier if and only if Ky + 1" is R-Cartier. If
p: W — X and g: W — Y resolve the indeterminancy of ¢ = qop~!,
then we may write

p(Kx+A)=q¢"(Ky+TD)+FE and p*(Kx+A')=¢(Ky+I')+E".

Since pF — E' =y 0 is g-exceptional, uE = E’ by (2.7). Therefore, ¢
is (Kx + A)-non-positive (respectively (Kx + A)-negative) if and only
if ¢ is (Kx + A’)-non-positive (respectively (Kx + A’)-negative).
Finally, one sees that since Kx + A’ =y u(Kx + A) it follows that
Ky + 1" =y p(Ky +71), so that Ky + I' is nef over U if and only if
Ky + 1" is nef over U. O

12. FINITENESS OF MODELS, THE GENERAL CASE
Lemma 12.1. Theorem 5.12,, and Theorem 7.23, tmply Theorem 7.24,.

Proof. By (10.3), we can find finitely many rational maps ¢;: X --»Y;
over U, 1 < i < k, such that if ¢: X --» Y is a Q-factorial weak
log canonical model of Kx + A, where A € C then there is an index
1 <7 < k and an isomorphism 7: Y; — Y such that ¢ = 7o ¢;.
By (??) for each index 1 < i < k there are finitely many contraction
morphisms f;;: Y; — Z;; over U such that if A € Wy (V) and there
is a contraction morphism f: Y — Z over U, with

Ky +T = Ky + ¢.A = f*D,

for some divisor D on Z, then there is an isomorphism {: Z;; — Z
such that f = o f;;.

Pick A € LA(V) and let ¢: X --» W be any weak log canonical
model of Ky + A over U. By (8.6) we may find a kawamata log
terminal pair (X, A’) such that Kx + A’ ~gy Kx + A. But then

Kw 4+ VU = Ky + U A" ~py Ky 4+ 9.4,

and Ky + V is kawamata log terminal. As we are assuming Theo-
rem 5.12,, and Theorem 7.23,, there is a log terminal model g: W --»
Y of Ky + V. But then Ky +1' = Ky + ¢,V is divisorially log terminal
terminal, Y is Q-factorial and the inverse of f does not contract any
divisors. But the inverse f of g is the structure map. Thus f: Y — W
is a small morphism and

Ky +T = f"(Kw + ®),

is nef over U. If ¢: X --» Y is the induced rational map then ¢ is
a Q-factorial weak log canonical model of Kx + A’ over U. But then

(11.7) implies that ¢ is also a Q-factorial weak log canonical model of
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Kx + A over U. Thus there is an index 1 < i < k and an isomorphism
n: Y, — Y such that ¢ = 1o ¢;. Via the isomorphism 7, and an
isomorphism &, the contraction f corresponds to one of the finitely
many contractions f;;. U

13. THE SARKISOV PROGRAM
13.1. Introduction. Recall the following.

Conjecture 13.1. Let (X, B) be a kawamata log terminal pair.
Then we may run o Kx + B minimal model program, p : X --» X'
such that either
(1) (X', B" = p.B) is a minimal model (that is Kx + B’ is nef),
or
(2) there is a Mori fiber space ¢ : X' — S (that is p(X'/S) =1 and
—(Kx + B') is ¢p-ample).

A Kx + B minimal model program is a finite sequence of well under-
stood birational maps X; --+ X1 (known as Kx + B flips and diviso-
rial contractions) inducing a rational map p: X = Xy --» X' = Xy. If
Kx + B is pseudo-effective (resp. not pseudo-effective), then (X', p.B)
is a minimal model (resp. there is a Mori fiber space X’ — S). By [?],
the only case in which (13.1) is not known to hold is when Ky + B is
pseudo-effective and neither B nor Ky + B are big. It is not the case
that a given pair (X, B) has a unique minimal model (resp. a unique
Mori fiber space), however the minimal model program predicts that
any two minimal models (resp. Mori fiber spaces) should be related in
a very precise manner (the terminalizations of two minimal models are
related by a sequence of flops, resp. two Mori fiber spaces are related
by a sequence of Sarkisov links cf. (13.11)).

Recently Kawamata [6] has proved:

Theorem 13.2. Let (X, B) be a Q-factorial terminal log-pair. Suppose
that (X', B") and (X", B") are two minimal models of (X, B).

Then the birational map X' --+ X" may be factored as a sequence
of Kx + B-flops.

Note that if neither B nor Kx + B are big, then the existence and
finiteness of minimal models for (X, B) is still conjectural.

The Sarkisov program predicts that a result similar to (13.2) should
also hold in the case when Kx + B is not pseudo-effective. The purpose
of this paper is to show that this is indeed the case.

Theorem 13.3. Let (X, B) be a Q-factorial kawamata log terminal

pair such that Kx + B is not pseudo-effective.
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Then any two corresponding Mori fiber spaces are related by a se-
quence of Sarkisov links.

We say that two pairs (X', B') and (X", B”) are birational if there
exists a birational map g : X’ --» X” such that ¢,B' = B” and
(g71).B" = B'. Note that if (X', B’) and (X", B”) are birational
Q-factorial terminal pairs, then it is easy to see that (X', B’) and
(X", B") are the output of running a minimal model program for an
appropriate log pair (X, B). Consider in fact X a resolution of the
indeterminacies of ¢ so that X is smooth and we have morphisms
p: X = X' and ¢ : X — X” with ¢ = go p~!. Then, we may write
Kx+(p™1).B =p*(Kx+B')+E where E' is effective and its support
equals Ex(p). Since X’ — X is birational, we may run the (X, B) min-
imal model program over X'. It is easy to see that the output of this
minimal model program is X’. Since (p~!),B" = (¢ !).B”, a similar
statement holds for (X", B”). We therefore have the following:

Corollary 13.4. Let ¢' : (X', B') — S" and ¢" : (X", B") — 5" be
two Mori fiber spaces of Q-factorial terminal pairs.
Then (X', B') and (X", B") are birational if and only if they are

related by a finite sequence of Sarkisov links.

In fact, the most interesting case of (13.3) is when B’ = B” = 0 and
X’ and X" have terminal singularities.

We now recall the definition of Sarkisov links:

Links of type (I)

Z  --» X1
Ve
X \J
1
S — Sl

where Z --+ X is a sequence of flips, Z — X is a extremal divisorial
contraction, X; — S is a Mori fiber space and p(S;/S5) = 1.

Links of type (II)

Z --» 7
v e
X X1
! N !
S < 51

where Z --s Z' is a sequence of flips, 7 — X and Z/ — X, are

extremal divisorial contractions and X; — S7 is a Mori fiber space.
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Links of type (III)

X --» 7
N\
\J X3
$
S — Sl

where X --+ 7’ is a sequence of flips, Z/ — X is an extremal divisorial
contraction, X; — S is a Mori fiber space and p(S/S;) = 1.

Links of type (IV)

X i Xl
\ 1
S S1
N\ Ve
T

where X --» X’ is a sequence of flips, X; — S; is a Mori fiber space
and p(S/T) = p(51/T) = 1.

In order to explain the origins of this program let us recall the well
known case of rational surfaces. In this case the minimal surfaces are
P2, P! x P! and F,, for n > 2. A link of type I (resp. type III) relates
the Mori fiber spaces P? — SpecC and F; — P! by blowing up a
point on P? (resp. blowing down the —1 curve on Fy). A link of type II
relates the Mori fiber spaces IF,, — P! and F,.+; — P! by an elementary
transformation i.e. by blowing up a point on a fiber and then blowing
down the strict transform of this fiber. A link of type IV is the identity
on P! x P! and interchanges the two Mori fiber space structures. The
content of (13.3) is not only that P2, P! x P! and F,, are all related
by links as above, but also that any birational map p : P? —-» P2
may be obtained by a sequence of such links. This last statement is
equivalent to the Noether-Castelnuovo Theorem which says that the
group of birational transformations of P? is generated by isomorphisms
of P? and a single Cremona transformation.

The proof of (13.3) is based on the original ideas of the Sarkisov
program (as explained by Corti and Reid [2]). The main twist is that
we are unable to show termination of an arbitrary sequence of flips, nor
the acc property for log canonical thresholds. Instead our argument is
based of the principle of finiteness of minimal models for kawamata log
terminal pairs (Y,T') such that ' varies in a compact subset of the big

cone (cf. (13.6)).
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13.2. Notation and conventions. We work over the field of complex
numbers C. An R-Cartier divisor D on a normal variety X is nef if
D-C > 0 for any curve C' C X. We say that two R-divisors Dy, Dy are
R-linearly equivalent (D; ~g Do) if Dy — Dy = > r;(f;) where r; € R
and f; are rational functions on X. We say that a R-Weil divisor D
is big if we may find an ample R-divisor A and an effective R-divisor
B, such that D ~g A+ B. A divisor D is pseudo-effective, if for any
ample divisor A and any rational number ¢ > 0, the divisor D + €A is
big. If A is a Q-divisor, we say that A is a general ample divisor if A is
ample and there is a sufficiently divisible integer M > 0 such that M A
is very ample and M A € |M A| is very general. If A is a R-divisor, we
say that A is a general ample R-divisor if A = > r;A; where r; € R
and A; are general ample Q-divisors.

A log pair (X, A) is a normal variety X and an effective R-Weil divi-
sor A such that Ky + A is R-Cartier. We say that a log pair (X, A) is
log smooth, if X is smooth and the support of A is a divisor with global
normal crossings. A projective morphism g: Y — X is a log resolution
of the pair (X, A) if Y is smooth and ¢g~!(A)U{ exceptional set of g } is
a divisor with normal crossings support. We write ¢*(Kx+A) = Ky +T
and I' = > b;I"; where I'; are distinct reduced irreducible divisors and
g:I' = A. The discrepancy of T'; is a(I';, X, A) = —b;.

A pair (X, A) is kawamata log terminal (klt) if b; < 1 for all i. We
say that the pair (X, A) is log canonical if b; < 1 for all .. We say
that the pair (X, A) is terminal if the discrepancy of any exceptional
divisor is greater than zero.

Let (X, B) and (X', B’) be kawamata log terminal pairs, then (X', B")
is a minimal model of (X, B) if there is a birational map p: X --» X’
that extracts no divisors such that B’ = p,B and Kx/ + B’ is nef.

If p: X --» X' is a rational map of normal varieties over a normal
variety S and H is a R-Cartier divisor on X which is the pull back of
a R-Cartier divisor on S, then we say that p is an H-trivial rational
map.

13.3. Preliminaries. We begin by recalling several results from [?]
that we will need in what follows.

Theorem 13.5. Let (X, B) be a kit pair such that either one of the
following three conditions hold: i) B is big, or ii) Kx + B is big, or
ii1) Kx + B is not pseudo-effective.
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Then, any minimal model program with scaling for Kx + B exists
and terminates after finitely many steps.

Proof. See [7?]. O

Given a klt pair (X, B), we will say that a projective morphism of
normal varieties f : Y — Z is a nef model of (X, B) if ¢: X --» Y is a
minimal model of (X, B) and f is surjective with connected fibers and
Ky + ¢.B = f*H for some nef R-divisor H on Z.

Theorem 13.6. Let X be a normal projective variety and V a finite
dimensional subspace of Divg(X). Let By be a big Q-divisor on X and
B be a compact subset of V' such that for any B € B, one has that
(X, B) is kit and B > By.

Then the set

{f:Y — Z|f is a nef model of (X, B), B € B}
s finite.
Proof. See [7]. O

Corollary 13.7. Let (X, B) be a kit pair and £ be any set of exceptional
divisors such that £ contains only exceptional divisors E of discrepancy
a(E,X,B) <0.

Then there exists a birational morphism p: X' — X and a Q-divisor
B’ on X' such that:

(1) (X', B') is a Q-factorial klt pair,
(2) E is an exceptional divisor for u if and only if E € &,
(3) B' =Y pcx —a(E; X,B)E so that u.B' = B and Kx + B' =

Proof. See [?]. O

If &€ ={FE|a(E,X,B) < 0}, we say that X’ is a terminalization of
X. If € contains a unique divisor say E, then we say that pu: X' — X
is a diwvisorial extraction of E.

Lemma 13.8. Let (W, By) be a terminal pair, (X, Bx) a log pair and
f W -——» X a birational map that extracts no divisors. If Kx + Bx
is nef and a(E, X, Bx) > a(E,W, By) for all divisors E C W then
a(E, X, Bx) > a(E,W, By) for all divisors E over W. In particular

(1) (X, Bx) is kawamata log terminal,
(2) if X' = X is a divisorial extraction of a divisor E', with
a(E', X, Bx) <0 then E' is a divisor contained in W, and
(3) if X' — X is a terminalization of (X, Bx), then f': W --» X'
extracts no divisors.
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Proof. Let Z be a common log resolution and p: Z — X and ¢ : Z —
W be the induced morphisms. Then we may write

¢ (Kw + Bw) =p"(Kx + Bx) + F

where
¢.F = (a(E, X, Bx) — a(E,W,Bw))E > 0.
ECW

By the Negativity Lemma, it follows that F© > 0 and hence that
a(E, X, Bx) > a(E, W, By ) for all divisors E over W. As a(E, W, By) >
—1 for all divisors E over W, it follows immediately that (X, Bx) is
kawamata log terminal. To see the second assertion, it suffices to no-
tice that as (W, By) is terminal and a(E’, W, By) < a(E’, X, Bx) < 0,
then E’ is not exceptional over W. Similarly, a terminalization only
extracts divisors E; of discrepancy a(E!, X, Bx) < 0. O

Definition 13.9. Let (X, Bx) and (W, Bw) two Q-factorial log pairs
and f: W --» X a birational map. We will write (W, By) > (X, Bx)
if:

(1) f extracts no divisors,

(2) a(E,W,Bw) < a(E, X, Bx) for all divisors E C W.

Definition 13.10. Let (X, By) and (X', Bx/) be kawamata log termi-
nal pairs. Then (X, Bx) and (X', Bx:) are Sarkisov related if there

exists a kawamata log terminal pair (W, Bw) such that (X, Bx) and
(X', Bx) are the output of a (W, By )-MMP.

Notice that if (X, Byx) and (X', Bx/) are Sarkisov related, then we
may find a log smooth terminal pair (W', By») and morphisms p :
W' — X and ¢ : W' — X’ such that (X, Byx) and (X', Bx/) are the
output of a (W', By)-MMP.

13.4. The main result.

Theorem 13.11. Let
__QX/

l b’

be a birational map of Sarkzsov related kawamata log terminal pairs
(X, Bx) and (X', Bx:) where ¢ is a Kx + Bx-Mori fiber space and ¢’
1s a Kx + Bx/-Mori fiber space.
Then @ is given by a finite sequence of links of type I, II, III or IV.
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Proof. Let H ~gp —(Kx/ + Bx/) + (¢')*A’, where A’ is an ample R-
divisor on S" which is very general in NSg(S’) and H’ is a general
ample R-divisor. Therefore, Kx/ + Bxs + H' ~g (¢')*A’ is nef and
(X', Bxs + H') is kawamata log terminal. Similarly, let C' be a general
ample R-divisor on X such that (X, Bx + C) is kawamata log terminal
and Kx + By +C ~g ¢*A where A is an ample R-divisor on S which is
very general in NSg(S). We may assume that (W, By) is log smooth,
p: W — X and ¢ : W — X’ are morphisms and By + p*C' + ¢*H' +
Ex(p) + Ex(q) has simple normal crossings. We let Cyy = (p~!).C =
p*C and Hy = (¢7').H = ¢*H’, then we may assume that (W, By, +
cCyw + hHy) is terminal for any 0 < ¢, h < 2.

Claim 13.12. There exists an integer N > 0 and a finite sequence of
links of type I, II, III and IV

X:XO——-)Xl ——-)...——-)XN

such that if ¢; - X; — S; are the corresponding contraction morphisms,
pi « W -=» X, the corresponding rational maps and C; = (p;).Cw,
H; = (p;)«Hw and Bx, = (pi)«Bw, then

(1) there exist positive rational numbers
l=cy>ci>c>...>cy=0and

O=hy<hi <hy<...<hy<l1

such that Kx, + Bx, + ¢;C; + h;H; is nef,

(2) (X, Bx, +cCi+hiH;) < (W, By +¢;Cw+h;Hw) (in particular
pi: W --» X, extracts no divisors cf. (13.9)), and

(3) each link is given by a sequence of Kx, + Bx, + ¢;C; + h;H;
trivial rational maps (in particular Kx, + Bx, + ¢;C; + h;H; is
¢i-numerically trivial).

Remark 13.13. We have that:

(1) By (13.8), (X;, Bx, + ¢;C; + hiH;) is kawamata log terminal.
(2) Let X be a very general ¢;-vertical curve. By our choices of H
and C, we have that H; - 3; > 0 and C; - 3; > 0 for all i > 0.

Proof of 13.12. We let X; be a very general ¢;-vertical curve and we
set r; = H; - %;/C; - %;. Let s;41 be the supremum of all numbers
0 < o < ¢;/r; such that:

(1) Kxi + BXZ- + CiCi + hZHZ + O'(Hz - TZCZ) is nef, and
thW + O'(HW - TZOW))
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We will define X; by induction on . Assume that X; has already been
defined for some ¢ > 0.

If s;41 = ¢;/r;, then we let N =i+ 1 so that cy = ¢; — 18541 = 0
and we are done.

If Siv1 < Ci/T’i, we let Ci+1 = C; —TiSi41 > 0 and hi+1 = hz‘—i‘S@'_H > h;.
Notice that Kx, + Bx, + ¢i+1C; + hitx1H; is nef and kawamata log
terminal. Let F' be the extremal face defined by Ky, + Bx, + ¢;+1C; +
hiy1H;. Clearly R; C F where R; is the ray spanned by ¥;.

Suppose that there is an X-exceptional divisor £ C W such that

CL(E,XZ', BXi + C;+1Oi + h;—l-le) < CL(E, I/V, BW + C;_,_lCW + h,+1Hw)

7

for ¢, = ciy1 —ery, hiyy = hiy1 +eand 0 < e < 1. It follows that
a(E, X;, Bx, +ci1Ci+hiy1 H;) = a(E, W, By + i1 Cw + hip1 Hy ) <0

and so by (13.7), there exists a divisorial extraction p : Z — X; which
extracts E. By (13.8), ¢ : W --» Z extracts no divisors. We let

Kz + Bz +¢i1Cz + hiynHyz = (" (Kx, + Bx, + ¢i11C; + hiv1 H;).

Notice that By = ¢.By. We now run a minimal model program with
scaling over 5; for

Kz + Az = " (Kx, + Bx, + (¢iq — 0)Ci + hij Hy)

for some 0 < § < € < 1. Note that Kz+ Ay is a kawamata log terminal
pair numerically trivial over X; and Kx, + Bx, + (¢, —0)C; + h  H;
is negative on ;. Each step of this minimal model program is over
Si, so it is p*(Kx, + B; + ¢,,C; + hi 1 H;) numerically trivial and
hence Cj-positive. In particular this is a minimal model program for
w(Kx, + Bx, + (¢, — 0")C; + bl H;) for any 0 < §" < 6.

Since Z is covered by Kz + Az-negative curves (over S;), it follows
that K+ Ay is not pseudo-effective (over S;). Therefore, after finitely
many flips, we either have a K, + Ay Mori fiber space or a Kz + Ay
divisorial contraction.

Case 1. In the first case, we have a sequence of flips n: Z --» X; 1,
followed by a Mori fiber space ¢;11 : X;11 — S;y1. This is a link of
type L

Case 2. In the second case, we have a sequence of flipsn: Z --+ 7’
followed by a divisorial contraction v : Z" — X;4. Since p(X,;41/S;) =
1, one sees that there is an induced contraction morphism ¢; 1 : X;11 —
Siv1 = S; which is a Kz + Az Mori fiber space (as Kz + Ay is not
pseudo-effective over S;). We have obtained a link of type II.

Suppose on the other hand that

a(E, Xi, Bx, + ¢ Ci + hig ;) = a(E, W, By + ¢, Cw + hiy Hw)
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for any X-exceptional divisor £ C W and for any 0 < ¢ < 1. In
this case F' # R;, and we may find an extremal ray P C F such
that P and R; span a two dimensional face of F. Let X; — T be
the corresponding contraction which factors through S;. We now run
a minimal model program over T for Kx, + Bx, + ¢, ,C; + hj H;
where as above ¢, = ¢;41 — er; and hj,, = h;y1 + € for some 0 <
€ < 1. Notice that R; is Kx, + Bx, + ¢;;,C; + hi H-trivial and P
is Kx, + Bx, + ¢;,C; + hi, Hi-negative. After finitely many flips, we
either have a Kx, + By, + ¢,;,C; + hi,H; minimal model, divisorial
contraction or Mori fiber space (over T').

Case 3. In the first case, we let X; --+ X;,; be the corresponding
sequence of flips. We have that Kx,,, +Bx,,,+¢; 1 Ci1+hi  H;yq is nef
over T and there is a unique Kx,,, + Bx,,, +¢;Ciq1+hi Hiy trivial
extremal ray which is spanned by ;.1 the pushforward of ¥;. Let
®it1 + Xit1 — Sit1 be the corresponding fibration. We have obtained
a link of type IV.

Case 4. In the second case, we let X; --+ Z’ be the corresponding
sequence of flips and let Z/ — X;,; be the corresponding divisorial
contraction. Since p(X;41/T) = 1, one sees that there is an induced
contraction morphism ¢;,1 : X;11 — Siy1 := T. We have obtained a
link of type III.

Case 5. In the third case we let X; --» X, 1 be the corresponding
sequence of flips and ¢;1 : X;y1 — S;y1 be the corresponding Mori
fiber space over T'. We have obtained a link of type IV.

Lemma 13.14. We have that
(Xit1, Bx,oy + €i41Cip1 + hizaHip1) < (W, Bw + ¢iiCw + hiyi Hw).

Proof. The rational map X;,; --» X, extracts a divisor £ in Cases 1
and 2. Since EF C W, one sees that W --» X;;; extracts no divisors.
By definition of ¢;; and h;; 1, we have that

(Xi, Bx, + ¢it1Ci + hip1 H;) < (W, Bw + ¢i1Cw + hiyi Hw ).

Since in Cases 1 and 2 (resp. Cases 3, 4 and 5) the rational map
X; --» X1 is over S; (resp. over T') and Kx, + Bx, +¢;11C;+hiy1 H; is
numerically trivial over S; (resp. over T'), it follows that a(E, X;, Bx, +
ci1Ci + hiyiH;) = a(E, Xiq1, Bx,,, + ¢i1Cipr + hipaHiyy) for any
divisor £/ and so the inequality

a(E, Xit, Bx,., +Ci1Ciit+hiyi Hipr) > a(E, W, By4-cip1Cyw+hiy1 Hy )
for all divisors £ C W also holds. O

Lemma 13.15. We have that h; <1 for alli and if h; =1, thenc; =0

and X; --+ X' induces a rational map S; --+ S’.
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Proof. We will proceed by induction. Since hg = 0, it suffices to prove
that if A; < 1 then h;y; < 1. Let v : W/ — W be a proper birational
morphism such that p, = p; ov and ¢’ = ¢q o v are appropriate log
resolutions. We may write Ky + By = v*(Kw + Bw) + Ey where
Eyw > 0 is exceptional and By = (v71),By. We let Cyr = (v71),.Cyy
and Hy = (v!).Hwy Assume that h; < 1 and h;y; > 1. Then there
is a number 1 < h < min{h;, 1,2} and we let ¢ = ¢; —r;(h — h;) > ciiq.
We have

Ky + By + CCW/ -+ hHW/ = (p;)*<f(XZ + BXZ- +cC; + hHZ) + E,
KW’ -+ BW’ —+ hHW’ = (q/)*(le + Bx/ + hH/) + £
Note that since
(W', Bwr+cCwr+hHw) > (W, By +cCw+hHw) > (X;, Bx,+cCi+hH,),

by (13.8), F is effective. Since H' is very general, E’ is also effective.
Since 3; is a general ¢;-trivial curve, we may identify ¥; with its inverse
image in W’. We let ¢.3; be its image in X’. We have

> (Kx/ 4+ Bx/+ hH') - ¢.3; > 0.
This is a contradiction and so we may assume that h;y < 1. If we

have h;, 1 = 1, then one sees that ¢;;; = 0 and ¢.X; is ¢ vertical so
that X; --» X’ induces a rational map S; --» 5. O

Note that Kx, + Bx, + ¢;+1C; + hip1H; is pulled back from S; in
cases 1 and 2 and is pulled back from 7" in cases 3, 4 and 5. By (13.14)
and (13.15), we have that the link given by X; --+ X4, satisfies all
of the conditions of (13.12). To prove Claim 13.12; it suffices to show
that there exists an integer N > 0 such that ¢y = 0. To this end we
prove the following lemmas which will allow us to show that there is
no infinite sequence of links.

Lemma 13.16. For links of type Il and IV, we have that the inequality
a(E, X1, Bx,,, +¢ Cigathi Hivr) > a(E, W, By+c;, Cw+hi  Hy)
for all divisors E C W for any 0 < e < 1 also holds.

Proof. This follows from the fact that in cases 3, 4 and 5 we have the
inequality

a(E, Xi, Bx, + ¢ Ci + hi Hi) = a(E,W, By + ¢, Cw + hiy Hw)
and the fact that we are running a Kx, + Bx, +c¢;,,C;+ hj, H; minimal

model program (over T'). O
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Lemma 13.17. We have that r;y1 > r;. Moreover, in Case 5, we have
that riyq1 > 1y,

Proof. In Cases 3, 4 and 5, we let u : Z — X, be the identity and
E = 0. Since Z --» X, is an isomorphism over a big open set of
Xiv1, we may identify 3;,; and its preimage ¥; 1 in Z. We claim that

Sip1 - W (Kx, + Bx, + i Ci + hiy Hy) <0
and the above inequality is strict in Case 5. In Cases 1 and 2, this
follows as Z --+ X;;; is an isomorphism in a neighborhood of >,
and

Sivr - " (Kx, + Bx, + (¢ipq — 0)Ci + hiy Hi)O
Yit1 - (Kip1 + Bxiyy + (€ipq = 0)Cigr + hip Hipr) <0
for 0 « 6 < e < 1. In Cases 3 and 4, this is clear as —(Ky, + Bx, +
¢;1Ci + Wi 1 H;) is nef over S; and X; --» X1 is an isomorphism in a
neighborhood of ¥J;,1. In Case 5, we moreover obtain a strict inequality
as —(Kx,,, + Bx,,, + ¢, 1Cit1 + hi, Hiy1) is ample over Sj i,
Since

Yig1 - W (Kx, + Bx, + ¢i1Ci + hip Hy) = 0,
we have that 3,1 u*(H;—r;C;) < 0. Since p*(H;—r;C;) = (1) (H;—
r;C;) + eFE for some e > 0, we have that

Si-(Hip1=riCi1) = Sipa- () u(Hi=riCy) = S (0" (H—1:C;) —e E) <0,
or equivalently that

i it Hipa <

1= =l

' Yir1- Cina '

Moreover, in Case 5, the above inequality is strict. O

Lemma 13.18. There are only finitely many possibilities for ¢; - X —
S;.

Proof. Notice that the pairs (X;, Bx, +¢;C; + h; H;) are minimal models
for (W, By + ¢;Cyw + h;Hy) where 0 < ¢;, h; < 1. Suppose that h; = 0
for all 4, then s; = h;. 1 — h; = 0 for all 7 and so ¢; = ¢g > 0 for all ¢
and by (13.6), the claim follows.

If h; > 0 for some 4, then h; > h; for all j > i and again by (13.6)
the claim follows. O

Lemma 13.19. The sequence of links X; --+ X;11 is finite.

Proof. Assume that the given sequence of links is infinite. By (13.18),
we may assume that ¢; : X; — S5; is isomorphic to ¢ : X — S for
some ¢ < k. It then follows from the definitions of ¢; and h;, that

ckr1 = Civ1 and hgy1 = hyy; and as these sequences are monotone,
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then ¢; = ¢; and h; = h; for all j > ¢. By (13.17), we have that r; = r;
for all j > i.

Assume that we have a link of type III or IV, then for all divisors
E C W we have

a(E, Xi, Bx, + ¢, Ci + hi Hi) = a(E, W, B + ¢, Cw + hiyy Hw).

By (13.16), this property continues to hold on X; ;. Since ¢;11 = ¢;
and 7,41 = 7; it then follows that for all j > 4, all links X; --» X;
are of type III or IV. Since links of type III (resp. IV) decrease (do not
change) p(X;), there are only links of type IV (corresponding to Cases
3 and 5). The links of Cases 3 and 5 increase the discrepancies with
respect to Ky, + Bx, + ¢j,,C; + hi,  H; and in Case 3 strictly increase
at least one discrepancy (as in this case it is easy to see that X; and
X,+1 are not isomorphic). Therefore, we may assume that there are no
links as in Case 3. For any link of Case 5, by (13.17), we have that
rix1 < r; and hence a contradiction.

Therefore, we may assume that we only have links of type I and
II. Since p(X;41) > p(X;) (resp. p(Xiy1) = p(X;)) for links of type I
(resp. of type II), it follows that there are no links of type I. But links
of type II increase the discrepancies with respect to Kx, +Bx, + (¢, —
0)C; + hi  H; (for 0 < § < € < 1) and strictly increase at least some
discrepancy. This is the required contradiction. O

Since the sequence of links X; --» X, is finite, it follows that
cy = 0 for some N > 0 and hence (13.12) is proven. O

We may therefore assume that (Xy, Bx, + hvHy) < (W, Bw +
hyHy ) and that Kx, + Bx, +hnyHy is nef and ¢ numerically trivial.

Claim 13.20. h:=hy =1 and Xy --+ X' is an isomorphism induc-
ing an isomorphism Sy — S'.

Proof. Let v : W/ — W be a proper birational morphism such that
P = pnvovand ¢ = qov are appropriate log resolutions. We may
write Ky + By = v*(Kw + Bw) + Ew where Ey, > 0 is exceptional
and By = (v™1),Bw. We have

KW’ + BW/ + hHW/ = (p/)*(KXN + BXN + hHN) + E,
Kw' + Bw' + hHy = (¢)*(Kx: + Bx: + hH') + E'

where E is p/ exceptional and E’ is ¢’-exceptional. Note that since
(W, Bw + hHw) > (X, Bx, + hHx, ), by (13.8), E is effective. By
(13.15), we have that h < 1 and if h = 1, then X --+ X’ induces a

rational map Sy --» S’. Now let ¥’ be a general curve contracted by
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¢'. We may identify this curve with its inverse image in W’ and we let
p. ¥ be its image in Xy. If h < 1, we then have

O > (KX’ + BX/ + hHI> . 2/ = (KW’ + BW’ + hHW/) . 2/

= (KXN + BXN + hHN) . q;EI—FE . 2/.
Since £ -¥' > 0, we have (Kx, + Bx, +hHy) - ¢.X" < 0 contradicting
the fact that Kx, + Bx, + hHy is nef. Therefore h = 1. Now, let
D be an ample divisor on Xy and D’ be its strict transform on X'.
Note that D’ is relatively ample. Then Kx, + Bx, + Hy + 0D and
Kx' + Bx: + H' + 6D’ are ample and kawamata log terminal for any
0 < 6 < 1 and hence Xy and X' are isomorphic (by uniqueness of log
canonical models). It then follows that the rational map Sy --+» S’ =
Proj(R(Kx' + Bxs + H')) is a morphism and in fact an isomorphism
as p(X;/S;) = p(X'/S") = 1. O

l

14. FURTHER RESULTS
14.1. Fujita’s Approximation Theorem.

Theorem 14.1. Let L € Divg(X) be a big divisor on a normal irre-
ducible projective variety of dimension n. Then, for any € > 0, there

exist a projective birational morphism f 'Y — X and effective Q-
divisors A and B such that A is ample, f*L = A+ B and

vol(A) > vol(L) — e.

Proof. We follow [12]. After resolving the singularities of X, we may
assume that X is smooth. It is enough to show that there is a nef Q
divisor A with the above properties (recall that if A is nef and big,
then A ~g H + F where H is ample and F is effective, but then
A—0F =(1—-9)A+dH is ample for any 0 < § < 1).

Let B € Div(X) be very ample such that Kx+(n-+1)B is very ample.
For any p > 0, let M, = pL — (Kx + (n+ 1)B) and J, = J(||M,]).
One sees that M, ® J, is generated by global sections cf. (3.8) and
that

H°(Ox(IM,)) C H(Ox(lpL® J}))  V1>0.

To see the last assertion note that clearly
H(Ox (1My) ® T (1M]])") € H*(Ox (IpL) @ T (|| My]1)')
and that since by (3.22) J(|[IM,|]) € T(||M,|])!;, then by (3.32), we

have
H(Ox (IM,)) = Ho(gg(lMp) ® T ([1M,]])").



Let f : Y — X be a log resolution of 7, so that J,- Oy = Oy (—E,)
where E, > 0. Then f*(pL) — E, is generated by global sections and
hence nef. Notice that

HY(Oy (I(f*(pL) — Ep))) D H*(Ox(plL) ® ;) D H*(Ox (IM,)).
Therefore,
(f*(pL) — Ep)" = vol(f*(pL) — E;) = vol(M,) = p"(vol(L) — €)

and the result follows letting A = (1/p)(f*(pL)—E,) and B = (1/p)E,,.
U

Definition 14.2. Let L € Divg(X) be a big divisor on a normal pro-

jective variety. For any m > 0 sufficiently divisible, ¢, r| is birational.

The moving self-intersection number (mL)" of |mL| is given by
(mL)" =4(DyN...N D, N (X — Bs(|mL|)))

where D; € |/mL| are general.

Theorem 14.3. Let L € Divg(X) be a big divisor on a normal pro-
jective variety. Then

vol(L) = lim sup

(m L)[n}
mn

Proof. Let f,, : Y, — X be a log resolution of |mL| so that f*|mL| =
| Pyn| + F, where |P,,| is base point free and Bs(|mL|) = (fin)«(EFm). It
is easy to see that that since |P,,| is base point free, we have
(mL)" =4(Myn...AM,) =P"
where M; € |P,,| are general. It then follows that
vol(L) = vol(mL)/m" > vol(P,,)/m™ > P" = (mL)" /m".

To see the reverse implication, consider ¢, f : Y — X and A, B as
in (14.1). Pick k£ > 0 such that kA is very ample. Replacing Y by a
common resolution of Y and Y}, we can write

(kL) ~q Ag + Ej,
where Ay, ~g kA is generated by global sections and Ej, > 0 and

Ap > k™ (vol(L) —e€).
As | Ag| is base point free, we have Ej > F}, and so

Ay < P = (kL)
Therefore

(kL) k™ > vol(L) — e
and the Theorem follows by taking the limit. 0
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14.2. The Pseudo-effective Cone. We now recall a result of Boucksom-
Demailly-Paun-Peternell.

Theorem 14.4. Let L € Divg(X) be a big divisor on a normal irre-
ducible projective variety of dimensionn. Let f :' Y — X be a projective
birational morphism, A and B effective Q-divisors such that A is ample
and f*L =A+ B. Let H € Divg(X), H £ L be ample, then there is a
constant C' so that

(A1 B2 <O - H"- (vol(L) — vol(A)).
Proof. See [12, §11]. O

Theorem 14.5. Let X be a normal irreducible projective variety of
dimension n. Then the cones Mov(X) and Eff(X) are dual.

Recall that Eff(X) is the closure of the big cone i.e. the cone of
pseudo-effective divisors. Mov(X) C N;(X)g is the cone of movable
(or mobile) curves i.e. the closed convex cone spanned by all curves of
the form

fo(Ar- - Ap)

where f : Y — X is a projective birational morphism and A; are ample
divisors in Divg(Y).

Notive that if D € Div(X) is effective and v € Mov(X), then D - >
0. It follows that

Mov(X) C Eff(X)".

Corollary 14.6. Let X be a smooth projective variety, the X is unir-
uled if and only if Kx is not pseudo-effective.

Proof. By (14.5), there is a v € Mov(X) such that Kx -y < 0. This
implies that there is a covering family of curves C; with Ky - C; < 0.
But by a result of Miyaoka and Mori, this is equivalent to X being
uniruled. 0

Remark 14.7. Note that (14.6) also follows from the fact that as Kx
is not pseudo-effective, then there is an MMP X --+ X' that ends with
a Mori-fiber space g : X' — S. The fibers of g are known to be uniruled
(and in fact rationally connected).

Proof of (14.5). (See [12, §11].) Since Mov(X) C ELX)V, it suffices
to prove the reverse inclusion i.e. that Mov(X)Y C Eff(X). Suppose
by way of contradiction that there is a class & on the boundary of

Eff(X) but in the interior of Mov(X)Y. In particular vol(¢) = 0. Let
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h be an ample class such that h 4+ & and h — £ are ample. Note that
¢ —eh € Mov(X)Y for 0 < e < 1 and so

$7 o,
h-vy ™
for any mobile class . Notice that £+ dh is big for any 1 > ¢ > 0 and
by (14.1), we may find
f5:Ys = X, f5(§+6h) = As + Bs

where Ay is ample, By > 0,
1 on
(x)  vol(As) > vol(¢ + 6h) — 6" > Svol(§ +0h) > —- - h".

The class 75 = (f5)«(A2™") is movable and we have
() hevs=fh- Ayt > ()Y (A7)0

by the generalized Hodge inequalities. One sees that

-7 < (E+0R)-v5 = fi(E+0h)- Ay~ = A} + Bs - A7
By (14.4) and the first inequality in (%), we have that

Bs - AY1 < (C) - A" -vol(€ + 8h) — vol(A;))/?2 < Oy - 6"

where C; are constants independent of 0. The above inequality, (x) and
(#) toghether imply that

®) izi = (h”)j?/é"?r(izbﬂi—l)/n <Gy (DY 4 Cud

where C; are constants independent of §. Now vol(§) = 0 so that for
0 — 0, we have

lim A§ = lim vol(A§) = lim vol(§ + 6h) = 0.
By (b) we then have

lim el =0
s
which is the required contradiction. l

15. RATIONALLY CONNECTED FIBRATIONS
Recall the following.

Definition 15.1. d-long Let X be a smooth complex projective variety,
then
(1) X isrational if it is birational to P i.e. C(X) = C(z1,...,zy).
(2) X isunirational if there is a dominant rational map PZ --» X

i.e. if there are inclusions C C C(X) C C(xq,...,%Tm).
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(3) X isrationally connected if for any two general points p and
q there is a rational curve C passing through p and q.

(4) X is uni-rationally if for any general point p € X there is a
rational curve C passing through p (i.e. if Kx is not pseudo-
effective cf. (14.5)).

Remark 15.2. Clearly rational implies unirational which implies ratio-
nally connected which implies unirational. Note that if X is unirational,
then k(X) < 0 and if X is rationally connected, then h°(Q%) = 0.

Theorem 15.3. If dim X < 2, then X is rational if and only if it s
unirational or rationally connected.

Proof. By (15.2), it suffices to show that if X is rationally connected
then it is rational. In this case, we have P(X) = h®(w$?) = 0 and
RO(QY) = 0. If dim X = 1 this means that the genus of X is 0 and
so X is P&, If dim X = 2, then by a theorem of Castelnuovo, X is
rational. U

Remark 15.4. In dim > 3 there are uniruled varieties that are not
rational. It is not known if rationally connected are allways unirational.
Note that by a Theorem of Campana and Kollar-Mori-Myiaoka, any
Fano manifold (—Kx is ample) is rationally connected. Eg. a general
hypersurface in P of degree n + 1 with n > 0 and a 2 — 1 cover of
P branched along a general divisor of degree 2n with n > 0. We don’t
know if these varieties are unirational.

Theorem 15.5. Ifdim X = 2, then X is uniruled if and only if k(X)) <
0.

Corollary 15.6 (Liiroth’s problem). Let C C L C C(z,y) be any field.
Then L = C or L = C(t) or L =2 C(s,t).

Remark 15.7. It is known that X is rationally connected if and only
if there is a morphism f : Pt — X such that f*Tx is ample (if n > 3
this is equivalent to the existence of a smooth rational curve with ample
normal bundle).

Lemma 15.8. Given any two points p,q on a smooth rationally con-
nected variety X, there is a chain of rational curves containing p and

q.
It is conjectured that

Conjecture 15.9. Let X be a smooth complex projective variety, then
(1) X is rationally connected if and only if h°(X, (Q%)®™) =0 for

allm > 0.
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(2) X is uniruled if and only if h°(w™) = 0 for all m > 0.

Note that the second part is known in dimension < 3 by the MMP.
The second part is known to imply the first part cf. (15.12)

Definition 15.10. Let X be a smooth complex projective variety. The
maximally rationally connected fibration (MRC fibration) is a
morphism 7 : X' — Z such that X' is birational to X, the general fiber
of m is rationally connected and for any z € Z very general, then any
rational curve on X' which meets the fiber X is contained in X,.

The existence of MRC fibrations is guaranteed by a result of Cam-
pana and Kollar-Mori-Myiaoka. It is unique up to birational equiva-
lence. Recall the following fundamental result of Graber-Harris-Starr:

Theorem 15.11. Let 7 : X — B be a proper morphism of smooth
complex varieties where dim B = 1. If the general fiber of w is rationally
connected then there is a section of 7.

Corollary 15.12. The image Z of the MRC fibration 7 : X' — Z is
not uniruled.

15.1. singular varieties. The situation is more complicated for sin-
gular varities. The following definitions are useful.

Definition 15.13. Let X be a reduced separated scheme of finite type
over C, then X 1is is rationally chain connected if for any 2 general
points p,q € X, there is a connected chain of rational curves C = UC;
containing p and q. IfV C X is a closed subset, then X is is rationally
chain connected modulo V' if for any 2 general points p,q € X, there
1s a connected chain of curves C' = UC; containing p and q such that
if C; is mot rational then C; C V.

Remark 15.14. Note that if X is a smooth variety, then X is ratio-
nally chain connected if and only if it is rationally connected. This fails
for singular varieties. Eg. let X be a cone over an elliptic curve, then
X is rationally chain connected but it is not rationally connected.

We have the following result of Hacon and M°Kernan.

Theorem 15.15. Let (X, B) be a log pair and f : X — S be a projec-
tive morphism such that —Kx is relatively big and Ox(—m(Kx + B))
1s relatively generated for somem > 0. Let g : Y — X be any birational
morphism and m = f o g.
Then, every fiber of 7 is rationally chain connected modulo g *NKLT (X, B).
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Corollary 15.16. If (X, B) is a kawamata log terminal pair and f :
X — S is a projective morphism such that —(Kx + B) is relatively nef
and — K x 1s relatively big.

Then every fiber of f is rationally chain connected (and in fact ra-
tionally connected).

Corollary 15.17. If (X, B) is a kawamata log terminal pair and g :
Y — X is any proper birational morphism, then the fibers of g are
rationally chain connected.

Corollary 15.18. If (X, B) is a kawamata log terminal pair, then
(X, B) is rationally connected if and only if it is rationally chain con-
nected

Corollary 15.19. If (X, B) is a kawamata log terminal pair and f :
X --+Y is a rational map of normal projective varieties, then for any
r € X, the indeterminacy locus of x (given by q(p~*(x)) where T is the
graph andp:T'— X and q: T' — Y ) is covered by rational curves.

Corollary 15.20. If (X, B) is a kawamata log terminal pair and f :
X --» S is a projective morphism with connected fibers such that
—(Kx + B) is relatively nef and —Kx 1is relatively big. Then for any
birational morphism g 1Y — X, f o g has a section over any curve.

Corollary 15.21. If (X, B) is a kawamata log terminal pair and — (K x+
B) is big and nef. Then X is rationally connected and in fact simply
connected.
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