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1. Preliminaries

1.1. Resolution of singularities. We will need the following result
of Hironaka on the resolution of singularities.

Theorem 1.1. Let X be an irreducible complex projective variety and
D be an effective Cartier divisor on X. Then there is a birational mor-
phism µ : X ′ → X from a smooth variety X ′ given by a finite sequence
of blow ups along smooth centers supported over the singularities of D
and X such that

µ∗D + Exc(µ)

is a divisor with simple normal crossings support.

The above statement is taken from [11, §4]. For a particularly clear
exposition of the proof of this result as well as references to the litera-
ture, we refer to [7].

1.2. Divisors. Let X be a normal complex variety.

Definition 1.2. A prime divisor is an irreducible and reduced codi-
mension 1 subvariety of X. The group of Weil divisors WDiv(X)
is the set of all finite formal linear combinations D =

∑
diDi where

2



di ∈ Z and Di are prime divisors with addition defined component by
component ∑

diDi +
∑

d′iDi =
∑

(di + d′i)Di.

A divisor D ∈ WDiv(X) is effective (denoted by D ≥ 0) if D =∑
diDi, with di ≥ 0 and Di prime divisors.

Definition 1.3. For any divisor D ∈ WDiv(X), one may define the
divisorial sheaf OX(D) by setting

Γ(U,OX(D)) = {f ∈ C(X)|((f) +D)|U ≥ 0}.

Remark 1.4. Note that OX(D) is a reflexive sheaf of rank one so that
OX(D)∨∨ ∼= OX(D). Conversly, for any torsion free reflexive sheaf of
rank one F there is a Weil divisor D such that F ∼= OX(D). Notice
moreover that if U = X −Xsing and i : U → X is the inclusion, then
i∗OU(D|U) = OX(D).

Definition 1.5. For any rational function 0 6= f ∈ C(X), we let
(f) ∈ Div(X) be the principal divisor corresponding to the zeroes and
poles of f . We say that two divisors D,D′ ∈ Div(X) are linearly
equivalent if D −D′ = (f) where f ∈ C(X). The complete linear
series corresponding to a divisor D ∈ Div(X) is given by

|D| = {D′ ≥ 0|D′ ∼ D}.

Definition 1.6. For any divisor D ∈ Div(X), the base locus of D is
given by

Bs(D) = ∩D′∈|D|Supp(D).

(Here Supp(D) is the support of D i.e. the subset of X given by the
points of D.)

Definition 1.7. If |D| 6= ∅, then |D| ∼= Pk ∼= PH0(OX(D)) for some
k > 0. We let k be the dimension of |D| and

φ|D| : X 99K Pk

be the corresponding rational map. Note that if U = X − Bs(D), then
(φ|D|)|U is a morphism. More explicitely, if {s0, . . . , sk} is a basis of
H0(OX(D)), then

(φ|D|)|U(x) = [s0(x) : . . . : sk(x)].

Definition 1.8. A k-cycle on X is a Z-linear combination of irre-
ducible subvarieties of dimension k. The set of all k-cycles on X is
denoted by Zk(X) and it is an abelian group with respect to addition.
Note that Zdim(X)−1(X) = WDiv(X).
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Definition 1.9. A Cartier divisor is a Weil divisor D which is locally
defined by the zeroes and poles of a rational function f ∈ C(X). The
group of Cartier divisors Div(X) is a subgroup of WDiv(X) and it
may be identified with Γ(X,C(X)∗/O∗X) (here C(X) denotes the sheaf
of rational functions). Note that a Weil divisor D is Cartier if and
only if the sheaf OX(D) is invertible.

If K ∈ {Q,R, . . .}, then we let WDivK(X) = WDiv(X) ⊗Z K and
DivK(X) = Div(X)⊗Z K. If D,D′ ∈WDiv(X), then D ∼K D′ if and
only if D −D′ =

∑
di(fi) with fi ∈ C(X) and di ∈ K.

Definition 1.10. If D is a Cartier divisor on X and f : Y → X
is a dominant morphism, then we define the pullback f ∗D of D as
follows: Let Ui be an open covering of X and gi ∈ C(X)∗ such that
D ∩ Ui = (gi) ∩ Ui, then f ∗D is defined by gi ◦ f on f−1(Ui).

Definition 1.11. If D is Cartier divisor on a proper normal variety
X and C ⊂ X is a curve contained in X, then the intersection of
D and C is given by D · C = deg(i∗D) where i : C ′ → X is the
induced map from the normalization of C to X. Two Cartier divisors
D and D′ (or more generally two elements D,D′ ∈ WDiv(X) such
that D − D′ ∈ DivR(X)) are numerically equivalent (denoted by
D ≡ D′) if (D −D′) · C = 0 for any curve C ⊂ X.

Numerical equivalence generates an equivalence relation in Div(X)
and in Z1(X). We let

N1(X) = DivR(X)/ ≡ and N1(X) = (Z1(X)⊗Z R)/ ≡ .

Note that N1(X) and N1(X) are dual vector spaces over R. Their
dimension ρ(X) is the Picard number of X.

Definition 1.12. The cone of effective 1-cycles is the cone

NE(X) ⊂ N1(X)

generated by {
∑
niCi s. t. ni ≥ 0}.

Given a proper morphism of normal varieties f : X → Y and an
irreducible curve C ⊂ X, we let f∗(C) = df(C) where d = deg(C →
f(C)). If f(C) is a point, then we set f∗C = 0. One sees that

f ∗D · C = D · f∗C ∀D ∈ Div(Y ).

Extending by linearity, we get an injective homomorphism

f ∗ : N1(Y )→ N1(X)

and surjective homomorphisms

f∗ : N1(X)→ N1(Y ), NE(X)→ NE(Y ).
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Definition 1.13. If D =
∑
diDi ∈WDivR(X), where Di are distinct

prime divisors, then we define the round down, the round up and
the fractional part of D by the formulas

pDq =
∑
pdiqDi, xDy =

∑
xdiyDi, {D} =

∑
{di}Di

where xdiy is the biggest integer ≤ di, pdiq is the smallest integer ≥ di
and {di} = di − xdiy.

Remark 1.14. Note that if D ∼Q D′ it is not the case that pDq =
pD′q. If D ∈ DivQ(X), and Y ⊂ X is a subvariety, it is also not the
case that xD|Y y = xDy|Y . We have p−Dq = −xDy.

Definition 1.15. If D ∈ WDiv(X) and |D| 6= ∅, we let Fix(D) =∑
fiFi where fi is the minimum of the multiplicities of any divisor

D′ ∈ |D| along the prime divisor Fi. We let Mob(D) = D − Fix(D).
Note that Bs(Mob(D)) has codimension at least 2.

1.3. Ample divisors.

Definition 1.16. A Cartier divisor D ∈ Div(X) is very ample if it
is base point free and φ|D| : X → PN is an embedding. A Q-Cartier
divisor D ∈ DivQ(X) is ample if mD is very ample for some m > 0.

Recall the following:

Definition 1.17. A coherent sheaf F on a variety X is globally gen-
erated if the homomorphism

H0(X,F)⊗OX → F

is surjective.

Theorem 1.18 (Serre). Let D ∈ Div(X) be an ample divisor on a
projective scheme and F a coherent sheaf on X. Then there is an
integer n0 > 0 such that for all n ≥ n0, F ⊗ OX(nD) is globally
generated.

Proof. [5] II §5. The idea is that we may assume that X = PN . Since
F is coherent, it is locally generated by finitely many sections of OX .
Each local section is the restriction of some global section of OPN (n) for
n� 0. By compactness, we only need finitely many such sections. �

Theorem 1.19. [Serre Vanishing] Let X be a projective scheme and
D ∈ Div(X) be a very ample line bundle and F a coherent sheaf. Then
there is an integer n0 > 0 such that for all n ≥ n0 and all i > 0,

H i(X,F ⊗OX(nD)) = 0.
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Proof. (cf. [5] III.5.2) We may assume that X = PN (replace F by
φD∗F ). The Theorem is clear if F is a finite direct sum of sheaves
of the form OPN (q). We can find a short exact sequence of coherent
sheaves

0 −→ K −→ ⊕OPN (qi) −→ F −→ 0

(eg. use (1.18)). We now consider the exact sequence

· · · ⊕H i(OPN (qi + n))→ H i(F ⊗OPN (n))→ H i+1(K ⊗OPN (n)) · · ·

and proceed by descending induction on i so that we may assume that
hi+1(K⊗OPN (n)) = 0 for n� 0 and i ≥ 0. Since hi(OPN (qi + n)) = 0
for n � 0 and i ≥ 0, we have hi(F ⊗ OPN (n)) = 0 as required for
n� 0 and i ≥ 0. �

Recall that we also have the following

Proposition 1.20. Let X be a projective scheme and D ∈ Div(X).
The following are equivalent

(1) D is ample;
(2) mD is ample for some m > 0;
(3) mD is very ample for some m > 0;
(4) there exists an integer m1 > 0 such that mD is very ample for

all m ≥ m1;
(5) for any coherent sheaf F , there exists an integer m2 = m2(F) >

0 such that F ⊗OX(mD) is globally generated for all m ≥ m2;
(6) for any coherent sheaf F , there exists an integer m3 = m3(F) >

0 such that

H i(X,F ⊗OX(mD)) = 0 for all i > 0, m ≥ m3(F).

Proof. Exercise. (See [5] II §7). �

Proposition 1.21. Let f : X → Y be a finite map of projective vari-
eties, L an ample line bundle on Y , then f ∗L is ample on X.

Proof. For any coherent sheaf F on X, one has that Rif∗F = 0 for all
i > 0, and so by the projection formula

H i(Y,F ⊗ f ∗Lm) = H i(X, f∗F ⊗ Lm) = 0

for all i > 0 (as L is ample on Y ). The proposition now follows from
(1.20). �

For a very ample divisor D on a projective variety X, and a subva-
riety V ⊂ X of dimension i, we let

Di · V
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be the degree of V viewed as a subvariety of PH0(OX(D)). More
generally, given D ∈ Div(X), we may pick H ∈ Div(X) such H and
D+H are very ample. For all j > 0, we view H ·W and (D+H) ·W
as subvarieties of X of dimension i−1 so that proceeding by induction
on the dimension of W , we may assume that Di−1 ·H ·W and Di−1 ·
(D +H) ·W are defined. We then let

Di ·W = Di−1 · (D +H) ·W −Di−1 ·H ·W.
By linearity, we may define Di · W for any D ∈ DivR(X) and W ∈
Zi(X)⊗Z R.

We have the following important result:

Theorem 1.22. [Nakai-Moishezon criterion] Let D ∈ Div(X) be a
Cartier divisor on a proper scheme X, then D is ample if and only if
for any 0 ≤ i ≤ n − 1 and any subvariety W of dimension i, one has
Di ·W > 0.

Proof. (cf. [10] 1.37) We will assume that X is projective. We may also
assume that X is irreducible. Clearly, if D is ample, then Di ·W > 0.
For the converse implication, we proceed by induction on n = dimX.
When dimX = 1, the Theorem is obvious. So we may assume that
D|Z is ample for all for all proper closed sub-schemes Z ( X.
Claim 1. h0(X,OX(kD)) > 0 for some k > 0 (actually κ(D) = n).

We choose a very ample divisor B ∈ Div(X) such that D+B is very
ample. Let A ∈ |D + B| be a general member. Consider the short
exact sequence

0→ OX(kD −B)→ OX(kD)→ OB(kD)→ 0.

Since OB(kD) is ample, for all k � 0 we have that hi(B,OB(kD)) = 0
for all i > 0, and so

hi(OX(kD −B)) = hi(OX(kD)) for i ≥ 2 and k � 0.

The same argument applied to the short exact sequence

0→ OX(kD −B)→ OX((k + 1)D)→ OA((k + 1)D)→ 0

shows that

hi(OX(kD −B)) = hi(OX((k + 1)D)) for i ≥ 2 and k � 0.

Putting this together, we see that for i ≥ 2 and k � 0, one has
hi(OX(kD)) = hi(OX((k + 1)D)) and so the number hi(OX(kD)) is
constant. But then for k � 0

h0(X,OX(kD)) ≥ h0(X,OX(kD))− h1(X,OX(kD))

= χ(X,OX(kD)) + (constant) = Dn/n! · kn +O(k − 1).
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Claim 2. OX(kD) is generated by global sections for some k > 0.
Fix a non-zero section s ∈ H0(X,OX(mD)). Let S be the divisor

defined by s. Consider the short exact sequence

0→ OX((k − 1)mD)→ OX(kmD)→ OS(kmD)→ 0.

By induction OS(kmD) is generated by global sections and so it suf-
fices to show that for k � 0, the homomorphism H0(X,OX(kmD))→
H0(S,OS(kmD)) is surjective. Arguing as in Claim 1, one sees that
h1(X,OX(kmD)) is a decreasing sequence and is hence eventually con-
stant as required.
Conclusion of the proof. φkD : X → PN is a finite morphism for
k � 0. If in fact C is a curve contracted by φkD, then kD · C =
OPN (1) · φkD(C) = 0 which contradicts C ·D > 0. The Theorem now
follows as kD = φ∗kDOPN (1) is ample (as it is the pull-back of an ample
line bundle via a finite map). �

Exercise 1.23. Let X be a projective variety, H an ample divisor on
X. A divisor D on X is ample if and only if there exists an ε > 0 such
that

D · C
H · C

≥ ε

for all irreducible curves C ⊂ X.

Theorem 1.24. [Nakai’s Criterion] Let D be a divisor on a projective
scheme X. D is ample if and only if D ·Z > 0 for any Z ∈ NE(X)−
{0}.

Proof. Exercise. �

Theorem 1.25. [Seshadri’s Criterion] Let D be a divisor on a projec-
tive scheme X. D is ample if and only if there exists an ε > 0 such
that

C ·D ≥ εmultx(C)

for all x ∈ C ⊂ X.

Proof. Assume that D is ample, then there exists an integer n > 0 such
that nD is very ample, but then

nD · C ≥ multx(C)

for all x ∈ C ⊂ X.
For the reverse implication, we proceed by induction. Therefore, we

may assume that for any irreducible subvariety Z ( X, the divisor D|Z
is ample and so DdimZ · Z > 0. By (1.22), it is enough to show that
Dn > 0. Let

µ : X ′ → X
8



be the blow up of X at a smooth point. Then µ∗D− εE is nef. In fact,
for any curve C ′ ⊂ X ′ we either have C = µ(C ′) is a curve and then

(µ∗D − εE) · C ′ = D · C − εmultxC ≥ 0,

or µ(C ′) = x and then since C ′ ⊂ E ∼= Pn−1 and OE(E) = OPn−1(−1)

(µ∗D − εE) · C ′ = ε degC ′ > 0.

But then, by (1.35)

(µ∗D − εE)n = Dn − εn ≥ 0

and this completes the proof. �

1.4. Positivity of divisors. Given a divisor on a variety X there are
several notions of positivity that will be essential in what follows. We
begin with the following:

Definition 1.26. If D ∈ DivR(X) is a R-Cartier divisor on a proper
variety X, then D is nef if D · C ≥ 0 for any C ∈ Z1(X).

The terminology nef was introduced by M. Reid. It stands for nu-
merically eventually free. The point is that if D is eventually free (i.e.
if it is semiample see (1.28)) then it is easy to see that D is nef.

Exercise 1.27. Let X be a projective variety, H an ample divisor on
X. A divisor D on X is nef if and only if D + εH is ample for all
rational numbers ε > 0.

Definition 1.28. A divisor D ∈ Div(X) (or more precisely the com-
plete linear series |D|) is base point free if for any point x ∈ X there
is a divisor D′ ∼ D such that x 6∈ Supp(D′). This is equivalent to
requiring that the sheaf OX(D) is generated by global sections.

A divisor D ∈ DivQ(X) is semiample if there is an integer m > 0
such that |mD| is base point free.

A divisor D ∈ DivR(X) is semiample if we may write D =
∑k

i=1 riDi

where ri ∈ R and Di ∈ DivQ(X) are semiample.

Note that if D ∈ Div(X) is base point free, then there is a morphism

φ|D| : X → PH0(OX(D)).

Definition 1.29. For any divisor D (or line bundle L), one can define
the Kodaira dimension

κ(D) := max
m>0
{dimφmD(X)}

here we set dimφmD(X) = −∞ if h0(OX(mD)) = 0.
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Remark 1.30. Frequently, one lets dimφmD(X) = −1 if h0(OX(mD)) =
0. If we adopt this convention, then

κ(D) = tr. deg.CR(D)− 1.

We have that κ(D) < 0 if and only if h0(OX(mD)) = 0 for all
m > 0.

If κ(D) = 0 then there exists an integer m0 such that h0(OX(mD)) =
1 if and only if m > 0 is divisible by m0. (It is an instructive excercise
to prove this.)

It is known (cf. [11, §2]) that if κ(D) > 0, then there exist constants
A,B > 0 such that for all m sufficiently divisible, we have

Amκ(X) ≤ h0(OX(mD)) ≤ Bmκ(X),

so that κ(D) = κ if and only if lim suph0(OX(mD))/mκ 6= 0.

Definition 1.31. A divisor D ∈WDivQ(X) is big if κ(D) = dim(X).

Remark 1.32. If D is big, then we define the volume of D by

vol(D) = lim sup
h0(OX(mD))

mn/n!

where n = dim(X). It is known that in this case

lim suph0(OX(mD))/mn = limh0(OX(mD))/mn

(cf. [11]) and that D ∼Q A+B where A is an ample Q-divisor and B
is effective cf. [11, §2]. Notice moreover that if D ≡ D′ then D is big
if and only if D′ is big cf. [11, §2].

Remark 1.33. If 0 < κ = κ(D) < dim(X), then it is not known if

limh0(OX(mD))/mκ

always exists.

Definition 1.34. A divisor D ∈ WDivQ(X) is pseudo-effective if
and only if for any ample divisor A and any rational number ε > 0, the
divisor D + εA is big. (Equivalently D is pseudo-effective if and only
if D is in the closure of the big cone. This property is also determined
by the numerical equivalence class of D.)

Theorem 1.35. [Kleiman’s Theorem] Let X be a proper variety, D a
nef divisor. Then DdimZ ·Z ≥ 0 for all irreducible subvarieties Z ⊂ X.

Proof. (cf. [11] 1.4.9) We assume that X is projective (Chow’s Lemma)
and irreducible. When dimX = 1, the Theorem is clear. By induction
on n = dimX, we may assume that

DdimZ · Z ≥ 0 ∀Z ⊂ X irreducible of dimZ < n,
10



and we must show that Dn ≥ 0. Fix H an ample divisor and consider
the polynomial

P (t) := (D + tH)n ∈ Q[t].

We must show that P (0) ≥ 0. For 1 ≤ k ≤ n, the coefficient of tk is

Dn−kHk ≥ 0.

Assume that P (0) < 0, then one sees that P (t) has a unique real root
t0 > 0.

For any rational number t > t0, one sees that

(D + tH)dimZ · Z > 0 ∀Z ⊂ X irreducible of dimZ ≤ n,

and so by (1.22), D + tH is ample. We write

P (t) = Q(t) +R(t) = D · (D + tH)n−1 + tH · (D + tH)n−1.

As D+tH is ample for t > t0, one has that (D+tH)n−1 is an effective 1-
cycle, so Q(t) ≥ 0 for all rational numbers t > t0 and so Q(t0) ≥ 0. One
sees that all the coefficients of R(t) are non-negative and the coefficient
of tn is Hn > 0. It follows that R(t0) > 0 and so P (t0) > 0 which is
the required contradiction. �

2. The Singularities of the Minimal Model Program

Definition 2.1. If X is a normal variety and i : U → X is the inclu-
sion of the nonsingular locus. Then U is a big open subset and we let
ωU be the canonical line bundle of U . ωU is an invertible sheaf whose
sections may be locally written as f ·dz1∧ . . .∧dzn where z1, . . . , zn are
local coordinates and f is a regular function. We define the canonical
sheaf as the divisorial sheaf ωX = i∗ωU . A canonical divisor on X is
a divisor KX such that OX(KX) ∼= ωX . Note that, despite the fact that
it is usaually referred to as “the canonical divisor”, KX is not uniquely
defined and may be non-effective.

Definition 2.2. A log pair (X,D) consits of a normal variety X and
a divisor D ∈WDivR(X) such that KX +D ∈ DivR(X).

Definition 2.3. A log resolution of a pair (X,D) is a proper bira-
tional morphism f : Y → X from a smooth variety such that Exc(f)
is a divisor and f−1(D) ∪ Exc(f) has simple normal crossings sup-
port (i.e. each component is a smooth divisor and all components meet
transversely).

Exercise 2.4. Compute a log resolution for 3 lines meeting at a point
and for the cusp y2 = x3.
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Definition 2.5. Given a log pair (X,D) and a log resolution f : Y →
X, we write

KY = f ∗(KX +D) + AY (X,D)

where f∗KY = KX and f∗AY (X,D) = −D. The divisor AY (X,D) is
the discrepancy divisor of (X,D). We will also write AY (X,D) =∑
aP (X,D)P where P are prime divisors on Y . The numbers aP (X,D)

are the discrepancies of (X,D) along P . We will also write

AY (X,D) = EY (X,D)− ΓY (X,D)

where EY (X,D) and ΓY (X,D) are effective with no common compo-
nents. The total discrepancy of (X,D) is given by

total discrepancy(X,D) = inf{aP (X,D)|P is a prime divisor over X},
and the discrepancy of (X,D) is given by

discrepancy(X,D) = inf{aP (X,D)|P is an exceptional prime divisor over X}.

Remark 2.6. Note that AY (X,D) is uniquely defined. To prove this,
use the Negativity Lemma given below.

Lemma 2.7 (Negativity Lemma). Let f : Y → X be a proper bira-
tional morphism of normal varieties. If −B ∈ DivQ(Y ) is f -nef, then
B is effective if and only if f∗B is effective. Moreover, if B is effective,
then for any x ∈ X, either f−1(x) ⊂ Supp(B) or f−1(x)∩Supp(B) = ∅.

Proof. See [10, Lemma 3.39]. �

Exercise 2.8. Let f : Y → X be a proper birational morphism and set
DY = −AY (X,D). Show that total discrepancy(X,D) = total discrepancy(Y,DY )
and give an example where discrepancy(X,D) = discrepancy(Y,DY ).

Exercise 2.9. If (X,D) and (X,D′) are two log pairs such that D ≤
D′, then show that for any log resolution f : Y → X of (X,D) and
(X,D′), we have AY (X,D) ≥ AY (X,D′).

Exercise 2.10. Let X be a smooth variety D =
∑
aiDi a sum of

distinct prime divisors, Z ⊂ X a smooth subvariety of codimension
k. Let p : BZ(X) → X be the blow up of X along Z and E be the
exceptional divisor dominating Z. Show that aE(X,D) = k−1−

∑
ai ·

multZDi.

The numbers aP (X,D) will allow us to define several important
classes of singularities that are essential for the Minimal Model Pro-
gram. The idea is that the bigger the discrepancy or total discrepancy
of (X,D) is, then the less singular the pair (X,D) is. It is important
to notice the following:
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Lemma 2.11. If the total discrepancy of (X,D) is < −1, then the
total discrepancy of (X,D) is −∞.

Proof. Exercise. �

Definition 2.12. A pair (X,D) is log canonical (respectively kawa-
mata log terminal) if aP (X,D) ≥ −1 (resp. aP (X,D) > −1) for
all prime divisors P over X. A pair (X,D) is canonical (respectively
terminal) if aP (X,D) ≥ 0 (resp. aP (X,D) > 0) for all prime divisors
P exceptional over X.

Remark 2.13. The condition that (X,D) is log canonical or kawa-
mata log terminal can be checked on any log resolution of (X,D). It is
known that kawamata log terminal singularities are rational (i.e. for
any resolution f : Y → X, we have Rif∗OY = 0 for i > 0) and
Cohen-Macaulay cf. [10, §5].

Remark 2.14. If dimX = 2 and (X,D) is a terminal pair, then X
is smooth. If dimX = 2 and (X,D) is a canonical pair, then X has
at most rational double point singularities which are not contained in
Supp(D).

Remark 2.15. If dimX = 2 then (X, 0) is a terminal (resp. canonical,
kawamata log terminal, log canonical) pair if and only if X is smooth
(resp. C2/finite subgroup of SL(2,C), C2/finite subgroup of GL(2,C)),
simple elliptic, cusp, smooth, or a quotient of these by a finite group).

Exercise 2.16. If X is the cone over a curve of genus g, and E is the
exceptional divisor corresponding to the blow up of the vertex. Show
that aE(X, 0) = −1 (resp. −1 + 2/n, < −1) iff g = 1 (resp. g = 0 is a
rational curve of degree n > 0, g ≥ 2).

Remark 2.17. As observed above, if x ∈ X is a rational double point,
then (X, 0) is canonical but not terminal. If x ∈ X is the vertex of a
cone over a rational curve, then (X, 0) is Kawamata log terminal, but
not canonical. If x ∈ X is the vertex of a cone over an elliptic curve,
then (X, 0) is log canonical but not Kawamata log terminal.

Exercise 2.18. Given a log pair (X,D) and two log resolutions f :
Y → X and f ′ : Y ′ → X such that f ′ = f ◦ ν for some morphism
ν : X ′ → X, show that ν∗AY ′(X,D) = AY (X,D).

Definition 2.19. We say that a pair (X,D) is purely log terminal
if the discrepancy of any exceptional divisor is greater than −1.

Remark 2.20. The notion of a purely log terminal pair (X,D) is par-
ticularly useful when S = xDy is irreducible. In this case S is normal
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and the pair (S,Θ) defined by adjunction (KX + D)|S = KS + Θ is
Kawamata log terminal.

Definition 2.21. We say that a pair (X,D) is divisorially log ter-
minal if there is a log resolution f : Y → X such that all f -exceptional
divisors E ⊂ Y have discrepancy greater than −1.

Remark 2.22. If X = P2 and D is a curve with a node, then (X,D)
is log canonical but not divisorially log terminal. If X = C2 and D is
the union of the x and y axis, then (X,D) is divisorially log terminal
but not purely log terminal.

Proposition 2.23. Given a divisorially log terminal pair (X,D), there
is a resolution f : Y → X which is an isomorphism at the general point
of each component of the strata of xDy.

Proof. [14] �

Remark 2.24. Using the above proposition, one can show that a pair
(X,D) is divisorially log terminal if and only if there is a closed subset
Z ⊂ X such that (X − Z,D|X−Z) is log smooth (cf. 2.29) and if E is
a divisor over X with center contained in Z, then aE(X,D) > −1.

Exercise 2.25. A divisorially log terminal pair (X,D) is Kawamata
log terminal if and only if xDy = 0.

Definition 2.26. Given a log pair (X,D), a place of non Kawa-
mata log terminal singularities of (X,D) is a divisor E over X
such that aE(X,D) ≤ −1. A center of non Kawamata log termi-
nal singularities of (X,D) is the image of a place of non Kawamata
log terminal singularities of (X,D). We let the non Kawamata log
terminal locus of (X,D) denoted by Nklt(X,D) be the subset of X
defined by the union of all centers of non Kawamata log terminal sin-
gularities of (X,D).

Remark 2.27. Traditionally non Kawamata log terminal places or
centers are called log canonical places or centers. This is meaningful
for log canonical pairs, but otherwise confusing.

Remark 2.28. One can similarly define places and centers of non log
canonical, non canonical and non terminal singularities. In the case of
non canonical and non terminal singularities, one should only consider
divisors E exceptional over X.

Definition 2.29. A pair (X,D) is log smooth if X is smooth and D
has simple normal crossings.
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Remark 2.30. If (X,D) is log smooth, then Nklt(X,D) = Supp(xDy).
Each component of the strata of xDy is a non Kawamata log terminal
center of (X,D). If X is smooth and P is a prime divisor on X and
Z ⊂ P is a subvariety of codimension c ≤ multP (D) in X, then Z is a
non Kawamata log terminal centers of (X,D).

Exercise 2.31. If (X,D) is a Kawamata log terminal pair, then there
is a log resolution f : Y → X such that ΓY (X,D) is smooth.

Exercise 2.32. If (X,D) is a Kawamata log terminal pair, then (X,D)
has finitely many places of discrepancy aE(X,D) > 0.

Definition 2.33. If (X,D) is a log canonical pair, Z ⊂ X is a closed
subscheme and G ∈ DivR(X) is an effective R-divisor. Then the log
canonical threshold of G along Z with respect to (X,D) is given by

cZ(X,D;G) := sup{c > 0|(X,D + cG) is LC near Z}.
Note that in order to compute cZ(X,D;G) it suffices to pick a log

resolution f : Y → X of (X,D + G), then cZ(X,D;G) is given by
the supremum of c ∈ R such that multE(−AY (X,D) + f ∗G) ≤ 1
for all divisors E on Y whose image intersects Z. Equivalently c =

min{ 1+aE(X,D)
multE(f∗G)

} for all divisors E on Y whose image intersects Z. If

Z = X we let cZ(X,D;G) =: c(X,D;G).

Exercise 2.34. Let X = C2 and G be the cusp defined by y2 = x3.
Show that c(X, 0;G) = 5/6.

Exercise 2.35. Let X be the cone over a rational curve of degree n
and G be a line through the vertex v ∈ X. Show that c(X, 0;G) = 1
and (X,G) is PLT.

2.1. Vanishing theorems.

Theorem 2.36. [Kodaira Vanishing Theorem] Let X be a smooth pro-
jective variety and D ∈ Div(X) an ample divisor, then

H i(X,OX(KX +D)) = 0 for all i > 0.

Remark 2.37. By Serre duality, this is equivalent to the condition that
H i(X,OX(−D)) = 0 for all i < dimX.

In applications, it is usually necessary to have a more flexible version
of (2.36). The following theorem is often sufficient.

Theorem 2.38. [Kawamata-Viehweg Vanishing] Let X be a smooth
projective variety and D ∈ Div(X). If D ≡M+F where M ∈ DivQ(X)
is nef and big and F ∈ DivQ(X) has simple normal crossings and
xFy = 0.

Then H i(X,OX(KX +D)) = 0 for all i > 0.
15



Exercise 2.39. Use (2.38) to deduce that if X is a smooth projective
variety, f : X → Y is a projective morphism and D ∈ Div(X), D ≡
M +F where M ∈ DivQ(X) is relatively nef and big and F ∈ DivQ(X)
has simple normal crossings and xFy = 0, then Rif∗(X,OX(KX +
D)) = 0 for all i > 0.

The above theorem generalizes to the following:

Theorem 2.40. [General Kawamata-Viehweg Vanishing] Let (X,∆)
be a Kawamata log terminal pair and D ∈ WDiv(X). If D ≡ ∆ + M
where M ∈ DivQ(X) is nef and big.

Then H i(X,OX(KX +D)) = 0 for all i > 0.

Proof. Assume for simplicity that D ∈ Div(X). Let f : Y → X be a
log resolution. Then since −EY + pEY q = −EY − x−EY y = {−EY },
we have

f ∗(KX +D) + pEY q ≡ KY + ΓY + {−EY }+ f ∗M

where f ∗M is nef and big. It follows that Rif∗OY (f ∗(KX + D) +
pEY q) = 0 for i > 0 and that H i(OY (f ∗(KX + D) + pEY q)) = 0 for
i > 0 (cf. the log smooth case of (2.39)). But then, as

f∗OY (f ∗(KX +D) + pEY q) = OX(KX +D),

we have

H i(OX(KX +D)) ∼= H i(OY (f ∗(KX +D) + pEY q))

and the theorem follows. �

The above theorem is a special case of the following

Theorem 2.41. [Relative Kawamata-Viehweg Vanishing] Let (X,∆)
be a Kawamata log terminal pair and D ∈ WDiv(X). If f : X → Y
is a projective morphism and D ≡ ∆ + M where M ∈ DivQ(X) is nef
and big over Y (i.e. M · C ≥ 0 for any curve C ⊂ X contracted by f
and M |Xη is big where Xη is the general fiber of f).

Then Rif∗OX(KX +D) = 0 for all i > 0.

Proof. Let H be a sufficiently ample divisor on Y , then M + f ∗H is
nef and big, Rif∗OX(KX + D) ⊗ OY (H) is generated by global sec-
tions and Hj(X,Rif∗OX(KX + D) ⊗ OY (H)) = 0 for all j > 0. By
the projection formula and a spectral sequence argument we have that
H i(X,OX(KX + D + f ∗H)) ∼= H0(Y,Rif∗OX(KX + D) ⊗ OY (H)).
By (2.40) the group on the left vanishes and since Rif∗OX(KX +
D)⊗OY (H) is generated by global sections, then Rif∗OX(KX +D)⊗
OY (H) = 0. Since OY (H) = 0 is locally free, the claim follows. �
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Exercise 2.42. Let M and H be as above. Show that M + f ∗H is nef
and big.

We will need a slightly more general version that applies to divisori-
ally log terminal pairs.

Theorem 2.43. Let (X,D) be a log smooth log canonical pair and
f : X → Z be a projective morphism. Let N ∈ Div(X) be a divisor
such that N −D is nef over Z and big over Z and the restriction of N
to any non-Kawamata log terminal center of (X,D) is big over Z.

Then

Rif∗OX(KX +N) = 0, for i > 0.

Proof. We proceed by induction on the dimension of X. If dimX = 1,
then deg(N) > 0 and the claim follows by (2.41). If dimX ≥ 2, then
we proceed by induction on the number of components of xDy. If
xDy = 0, the claim follows by (2.41). Otherwise, let S ∈ xDy be any
prime divisor and consider the short exact sequence

0→ OX(KX +N − S)→ OX(KX +N)→ OS(KS + (N − S)|S)→ 0.

By induction on the number of components of xDy, we have that
Rif∗OX(KX + N − S) = 0 for all i > 0 and by induction on the
dimension, we obtain that Rif∗(KS + (N − S)|S) = 0. The assertion
now follows immediately. �

2.2. Calculus of non Kawamata log terminal centers.

Theorem 2.44. [The connectedness lemma of Kollár and Shokurov]
Let f : X → Z be a proper morphism of normal varieties with connected
fibers and D ∈ WDivQ(X) such that −(KX + D) ∈ DivQ(X) is f -nef
and f -big. Write D = D+−D− where D+ and D− are effective with no
common components. If D− is f -exceptional (i.e. all of its components
have image of codimension at least 2), then

Nklt(X,D) ∩ f−1(z)

is connected for any z ∈ Z.

Proof. Let µ : Y → X be a log resolution of (X,D) and DY =
−AY (X,D). Then

Nklt(X,D) = µ(Nklt(Y,DY )).

Replacing X by Y , we may assume that X is smooth and D has simple
normal crossings support. We write D = D≥1 +D<1 for the decompo-
sition of D in to components of multiplicity ≥ 1 and < 1 respectively.
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In particular Nklt(X,D) = Supp(D≥1). Consider the short exact se-
quence

0→ OX(p−Dq)→ OX(p−D<1q)→ OS(p−D<1q)→ 0

where S = xD≥1y. Since

p−Dq = KX + p−(KX +D)q ≡ KX − (KX +D) + {KX +D},
by Kawamata Viehweg vanishing, we have that R1f∗OX(p−Dq) = 0
so that the homomorphism

f∗OX(p−D<1q)→ f∗OS(p−D<1q)

is surjective. Now, p−D<1q = −xD<1y ≥ 0 is effective and exceptional
and so f∗OX(p−D<1q) = OZ . It follows that OZ → f∗OS(p−D<1q)
is surjective. As p−D<1q is effective, we have an inclusion f∗OS ⊂
f∗OS(p−D<1q) and hence a surjectionOZ → Of(S) → f∗OS. Therefore
S → f(S) has connected fibers. �

Remark 2.45. There are two main cases of interest in the above
Theorem. If Z = Spec(C) so that (X,D) is a weak log Fano, then
Nklt(X,D) is connected. If f : X → Z is birational, (Z,B) is a log
pair D = −AX(Z,B) and (X,D) is log smooth, then this says that the
fibers of the log canonical places of (Z,B) on any log resolution are
connected.

Theorem 2.46. Let (X,D) be a log canonical pair such that (X,D0) is
Kawamata log terminal for some D0 ∈WDivQ(X). If W1 and W2 are
non Kawamata log terminal centers of (X,D), then so is any irreducible
component W of W1 ∩W2. Therefore, for any point x ∈ X such that
(X,D) is not Kawamata log terminal near x, there is a unique minimal
center of not Kawamata log terminal singularities for (X,D) containing
x.

Proof. The question is local, so we may assume that X is affine and
W = W1 ∩W2. Pick Di general divisors containing Wi and µ : Y → X
a log resolution of (X,D +D0 +D1 +D2) such that there are divisors
Ei ⊂ Y which are non Kawamata log terminal places of (X,D) with
centers Wi. Therefore, we have that multEi ΓY (X,D) = 1. Let ei =
multEi µ

∗D and e′i = multEi µ
∗Di. By our assumptions ei, e

′
i > 0. Let

ai = ei
e′i

, then E1 and E2 are non Kawamata log terminal places of

(X, (1 − ε)D + ε(a1D1 + a2D2)) for 0 < ε � 1 and NKLT(X, (1 −
ε)D + ε(a1D1 + a2D2)) = W1 ∪W2. By the Connectedness Theorem
(2.44), for any ε > 0 there are non Kawamata log terminal places
Fi(ε) ⊂ Y of (X, (1− ε)D+ ε(a1D1 + a2D2)) with centers contained in
Wi such that F1(ε) ∩ F2(ε) 6= ∅. We may assume that Fi(ε) = Fi are
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independent of ε (by finiteness of the number of exceptional divisors).
By continuity, these are also non Kawamata log terminal places of
(X,D). But then W = f(F1) ∩ f(F2) is a non Kawamata log terminal
center of (X,D). �

Theorem 2.47. Let (X,D) be a log canonical pair and W a minimal
non Kawamata log terminal center of (X,D). Assume that (X,D0) is
Kawamata log terminal for some D0 ∈WDivQ(X). If W is a prime di-
visor, then there exists a divisor DW ∈WDivQ(W ) such that (W,DW )
is Kawamata log terminal and

(KX +D)|W = KW +DW .

Let f : Y → X be a log resolution of (X,D), W ′ = (f−1)∗W and set
KW +DW = (f |W ′)∗((KY − AY (X,D))|W ′).
Proof. See [9, §16]. �

Remark 2.48. It is conjectured that (2.47) holds regardless of the
codimension of W . By a result of Kawamata, it is known that if H
is ample and ε > 0 is a rational number, then there exists a divisor
DW ∈WDivQ such that

(KX +D + εH)|W ∼Q KW +DW ,

and (W,DW ) is Kawamata log terminal.

2.3. Rational Singularities.

Definition 2.49. A variety Y has rational singularities if there is a
resolution f : X → Y such that f∗OX = OY and Rif∗OX = 0 for all
i > 0

Remark 2.50. Y has rational singularities if and only for any res-
olution f : X → Y , we have f∗OX = OY and Rif∗OX = 0 for all
i > 0. It is also known that Y has rational singularities if and only
if Y is Cohen-Macaulay and for some resolution f : X → Y , we have
f∗ωY = ωX .

Definition 2.51. A coherent sheaf F on a scheme X is Sd at a point
x ∈ X, if so is its stalk Fx as a module over the local ring Ox,X . This
means that there is a Fx regular sequence x1, . . . , xr ∈ mx of length r =
min{d, dimOx,X} i.e. xi is not a zero divisor for Fx/(x1, . . . , xi−1)Fx.
F is Sd on X if it is Sd at every point x ∈ X. X is Sd if OX is Sd.

A coherent sheaf F on a scheme X is Cohen-Macaulay if for any
point x ∈ X it is Sd for d = dim SuppFx (i.e. if it admits a regu-
lar sequence of length equal to the dimension of its support). In other
words F is Cohen-Macaulay at x if there are elements x1, . . . , xr ∈ mx
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with r = dim Supp(Fx) and the image of xi in Fx/(x1, . . . , xi−1)Fx is
not a zero divisor for 1 ≤ i ≤ r. Equivalently F is Cohen-Macaulay at
x if there is an element y ∈ mx such that its image in Fx/yFx is not
a zero divisor and Fx/yFx is Cohen-Macaulay or if there are elements
x1, . . . , xr ∈ mx with r = dim Supp(Fx) and dim SuppFx/(x1, . . . , xr)Fx =
0.

Remark 2.52 (Serre’s Criterion). If dimX = 2 and x ∈ X is an
isolated singularity, then X is Cohen-Macaulay at x if and only if it is
normal.

Theorem 2.53. If X is a normal projective variety and A ∈ Div(X)
is ample on X, then a coherent sheaf F on X with dim Supp(F ) = n
then F is Cohen-Macaulay if and only if H i(X,F ⊗OX(−rA)) = 0 for
i < n and r � 0.

Proof. [10, 5.72]. �

Proposition 2.54. If X is a normal projective variety and f : Y → X
a resolution, then f is a rational resolution if and only if X is Cohen-
Macaulay and f∗ωY = ωX .

Proof. (see [10, 5.12]) Let A ∈ Div(X) be ample. Since f ∗A is nef and
big, by (2.38), one sees that H i(Y, ωY (rf ∗A)) = 0 for all i > 0 and
r > 0. and by Serre duality we have

Hn−i(Y,OY (−rf ∗A)) = 0,

where n = dimX.
If f is a rational resolution, then Rif∗OY = 0 for i > 0 and so by an

easy spectral sequence argument,

Hj(X, f∗OY ⊗OX(−rA)) = Hj(Y,OY (−rf ∗A)) = 0

for any r > 0 and j < n. Since X is normal f∗OY = OX and so by
(2.53), X is Cohen-Macaulay. Notice that we also have

h0(X,ωX(rA)) = hn(X,OX(−rA)) = hn(Y,OY (−rf ∗A))

= h0(Y, ωY (rf ∗A)) = h0(X, f∗ωY (rA))

where the first equality holds by [10, 5.71]. But since ωX(rA) and
f∗ωY (rA) are generated for r � 0, it follows that the inclusion f∗ωY →
ωX is an isomorphism.

Suppose now that X is Cohen-Macaulay and f∗ωY = ωX . Proceeding
by induction on the dimension and cutting down by hyperplanes we
may assume that Rif∗OY is supported on points for any i > 0. Thus
Hj(X,Rif∗OY (−rA)) = 0 for i, j > 0 and since X is Cohen-Macaulay
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Hj(X, f∗OY (−rA)) = 0 for j < n and r � 0. By an easy spectral
sequence argument,

H0(X,Rif∗OY ⊗OX(−rA)) = H i(Y,OY (−rf ∗A)) = 0

for any r > 0 and 0 ≤ i ≤ n− 2. Thus Rif∗OY = 0 for 1 ≤ i ≤ n− 2.
Also there is a short exat sequence

0→ H0(Rn−1f∗OY (−rA))→ Hn(OX(−rA))→ Hn(OY (−rf ∗A))→ 0.

We claim that the last map is an isomorphism and hence Rn−1f∗OY =
0.

To see the claim note that as f∗ωY = ωX , then

H0(Y, ωY (rf ∗A)) ∼= H0(X, f∗ωY (rA)) ∼= H0(X,ωX(rA))

and the claim follows by Serre duality. �

Theorem 2.55. If (X,D) is a divisorially log terminal pair, then X
has rational singularities.

Proof. We will assume that X is projective, the pair (X,D) is Kawa-
mata log terminal. Consider a log resolution f : Y → X. We may
write

pEY (X,D)q ≡ KY − f ∗(KX +D) + ΓY (X,D) + {−EY (X,D)}.

As ΓY (X,D)+{−EY (X,D)} has simple normal crossings and xΓY (X,D)+
{−EY (X,D)}y = 0, then

Rjf∗OY (pEY (X,D)q) = 0 ∀i > 0.

Note that we also have f∗OY (pEY (X,D)q) = OX . Let A ∈ Div(X) be
ample. We have a diagramm

H i(OX(−rA))
=−−−→ H i(OX(−rA))yβ yα

H i(OY (−rf ∗A)) −−−→ H i(OY (pEY (X,D)q− rf ∗A)).

The existence of the vertical map β follows since there is a map of
complexes OX(−rA) = f∗OY (−rf ∗A) → R·f∗OY (−rf ∗A) and hence
of cohomology groups

H i(X,OX(−rA))→ Hi(X,R·f∗OY (−rf ∗A)) = H i(Y,OY (−rf ∗A)).

From the Leray Spectral sequence, we also get that α is an isomorphism.
But as hi(OY (−rf ∗A)) = hn−i(ωY (rf ∗A)) = 0 for i < n, we have
that H i(OX(−rA)) = 0 for i < n and r > 0. It is easy to see that
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the diagram commutes. Therefore X is CM. When i = n, we get an
injection

Hn(OX(−rA))→ Hn(OY (−rf ∗A))

i.e. a surjection

H0(ωY (rf ∗A)) = H0(f∗ωY ⊗OX(rA))→ H0(ωX ⊗OX(rA))

so that f∗ωY → ωX is surjective. �

3. Multiplier ideal sheaves

Definition 3.1. Let D ≥ 0 be a R-divisor on a smooth variety X and
f : Y → X be a log resolution of (X,D). Then the multiplier ideal
sheaf of (X,D) is defined as

J (X,D) = J (D) = JD := f∗OY (KY/X − xf ∗Dy).

Notice that J (X,D) ⊂ f∗OY = OX . In order to show that multiplier
ideal sheaves are well defined, one needs the following.

Proposition 3.2. The definition in (3.1) does not depend on the log
resolution.

Proof. Let f : Y → X and f ′ : Y ′ → X be two log resolutions of
(X,D). We may assume that f ′ = f ◦g for some morphism g : Y ′ → Y .
We have

f ′∗OY ′(KY ′/X−x(f ′)∗Dy) = f∗(OY (KY/X)⊗g∗OY ′(KY ′/Y −xg∗f ∗Dy))
and so it suffices to prove that g∗OY ′(KY ′/Y−xg∗f ∗Dy) = OY ′(−xf ∗Dy).
This follows from Lemma (3.3) below (cf. [12, Lemma 9.2.19]). �

Lemma 3.3. Let X be a smooth variety and D be a divisor with simple
normal crossings support and f : Y → X be a log resolution of (X,D),
then

f∗OY (KY/X − xf ∗Dy) = OX(−xDy).

Proof. Using the projection formula, it is easy to see that we may
assume that D = {D}. We must then show that KY/X − xf ∗Dy ≥ 0.
This can be done by a local computation. Let E be any divisor in Y
with center Z on X. We may work locally around a general point of
Z and assume that D =

∑
diDi where Z ⊂ SuppD. Let xi be local

coordinates on X with Di = {xi = 0} and yi be local coordinates on Y
with E = {y1 = 0}. We let ci = multE(f ∗Di) so that multE(f ∗D) =∑
dici <

∑
ci. We have xi = yci1 · bi for some regular functions bi on

Y . It follows that dxi = yci−1
1 cibidy1 + yci1 dbi and hence

dx1 ∧ . . . ∧ dxn = yγ−1
1 gdy1 ∧ . . . ∧ dyn
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for some regular function g on Y and γ =
∑
ci. Therefore

multE(KY/X) ≥
∑

ci − 1 > multE(f ∗D)− 1.

�

Remark 3.4. One could also define the multiplier ideal sheaf of a pair
(X,∆) with respect to a divisor D ∈ DivR(X) by

J ((X,∆);D) = f∗OY (KY − xf ∗(KX + ∆ +D)y)

where f : Y → X is a log resolution of (X,∆ + D). Note that
J ((X,∆);D) = J ((X,∆+D); 0) and if X is smooth, then J ((X,∆);D) =
J (X,∆ +D).

One should view the multiplier ideal sheaf J (X,D) as a measure of
the singularities of (X,D). Notice for example that a pair (X,∆) is
kawamata log terminal if and only if J ((X,∆); 0) = OX . We have the
following basic properties:

Proposition 3.5. Let D ≥ 0 be an R-divisor on a smooth n-dimensional
variety X.

(1) If G ∈ Div(X), then J (D +G) = J (D)⊗OX(−G).
(2) If D has simple normal crossings support, then J (D) = OX(−xDy).
(3) If D1 ≤ D2 with 0 ≤ Di ∈ DivR(X), then J (D2) ⊂ J (D1).
(4) If f : Y → X is a proper birational morphism of smooth vari-

eties, then

J (X,D) = f∗(J (Y, f ∗D)⊗ ωY/X).

(5) If multxD ≥ n, then J (D) ⊂ Ix where x ∈ X is any point and
Ix is the corresponding maximal ideal.

(6) If multxD < 1 then J (D)x = Ox,X .

Proof. Properties (1-4) are easy excercises. To see property (5), let
µ : X ′ → X be the blow up of X at x and E be the exceptional
divisor. By (4) and (1), we have

J (D) = µ∗(J (µ∗D)⊗ ωX′/X) = µ∗(J (µ∗D − nE)⊗ ωX′/X(−nE))

⊂ µ∗(ωX′/X(−nE)) = µ∗OX′(−E) ⊂ Ix.
Property (6) is (3.20). �

Remark 3.6. The same proof shows that if Z is an irreducible subva-
riety of dimension k and multZ D ≥ n− k+ p− 1, then J (D) ⊂ I<p>Z

where I<p>Z is the p-th symbolic power of IZ i.e. the ideal of regular
functions vanishing along a general point of Z to order at least p.
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Theorem 3.7. [Nadel Vanishing] Let X be a smooth variety, 0 ≤ D ∈
DivR(X) and f : X → Z be a projective morphism. If N ∈ Div(X) is
such that N −D is f -nef and f -big, then

Rif∗(OX(KX +N)⊗ J (D)) = 0 ∀i > 0.

Proof. Let g : Y → X be a log resolution of (X,D), then g∗(N −D) is
h-nef and h-big where h = f ◦ g. As g∗(N −D) is also g-nef and g-big
and it has simple normal crossings support, by (2.41), we have

Rjg∗OY (KY + pf ∗(N −D)q) = 0 ∀j > 0.

Similarly, we have

Rih∗(OY (KY + pf ∗(N −D)q)) = 0 ∀i > 0.

Since

g∗OY (KY + pf ∗(N −D)q) = OX(KX +N)⊗ g∗OY (KY/X − xf ∗(D)y)

= OX(KX +N)⊗ J (D),

we have that

Rif∗(OX(KX+N)⊗J (D)) ∼= Rih∗OY (KY +pf ∗(N−D)q) = 0 ∀i > 0.

�

Corollary 3.8. Let X be a smooth projective variety, 0 ≤ D ∈ DivR(X),
N,B ∈ Div(X) are such that N −D is nef and big and |B| is very am-
ple, then

OX(KX + nB +N)⊗ J (D)

is generated by global sections for all n ≥ dimX.

Proof. Let Xi = B1 ∩ . . . ∩Bi be the intersection of i general elements
Bi ∈ |B| that contain x. Consider the short exact sequences

0→ OXi(KX + jB +N)⊗J (D)→ OXi(KX + (j + 1)B +N)⊗J (D)

→ OXi+1
(KX + (j + 1)B +N)⊗ J (D)→ 0.

By induction on i, one shows that Hk(OXi(KX + jB +N)) = 0 for all
k > 0 and j ≥ i. It follows that if n ≥ dimX, then OX(KX + nB +
N)⊗J (D)→ OXdimX

(KX + nB +N)⊗J (D) is surjective and hence
OX(KX + nB +N)⊗ J (D) is generated at x. �

Remark 3.9. More generally, if F is a coherent sheaf on a projec-
tive variety of dimension n and B is very ample such that Hp(F ⊗
OX(jB)) = 0 for any p > 0 and j ≥ 0, then F ⊗OX(nB) is generated
by global sections. To see this, consider the short exact sequence

0→ F ′′ → F → F ′ → 0
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where dim Supp(F ′′) = 0 and F ′ contains no subsheaves supported at
points. Then F ′′ is generated by global sections and we may apply the
argument of (3.8) to F ′.

Definition 3.10. Let X be a smooth variety and V a nonempty lin-
ear series on X (resp. 0 6= a ⊂ OX an ideal). Pick f : Y → X a
log resolution of (X, V ) (resp. of (X, a)) i.e. a proper birational mor-
phism f : Y → X such that Y is smooth, f ∗V = V ′ + F where V ′

is a free linear series and F = Fix(f ∗V ), and F + Exc(f) has simple
normal crossings support (resp. a ·OY = OY (−F ) and F + Exc(f) has
simple normal crossings support). For any 0 < c ∈ R, we define the
corresponding multiplier ideal sheaf

J (c·V ) = f∗OY (KY/X−xcFy) (resp. J (c·a) = f∗OY (KY/X−xcFy).

Proposition 3.11. Let X be a smooth variety and V1 ⊂ V2 be nonempty
linear series on X, 0 6= a1 ⊂ a2 ⊂ OX ideals, then

J (V1) ⊂ J (V2) and J (a1) ⊂ J (a2).

If b is the base ideal of a nonempty linear series V and D ∈ V is a
general member and 0 < c < 1 is a real number, then

J (c · V ) = J (c · b) = J (c ·D).

Proof. Exercise. �

3.1. First geometric applications of multiplier ideals. In this
section we will discuss two geometric applications of multiplier ideals.

Theorem 3.12. Let S be a finite set of points on Pn and D ⊂ Pn be
an hypersurface of degree d such that multxD ≥ k for all x ∈ S. Then
there is a hypersurface of degree ≤ xdn

k
y containing S.

Proof. Set G = n
k
A so that multxG ≥ n for all x ∈ S. Therefore

J (G) ⊂ IS. Since OPn(KPn) = OPn(−n− 1), we have that

H i(ωPn ⊗OPn(l)⊗ J (G)) = 0 ∀i > 0, l >
dn

k
.

Therefore, for l ≥ xdn
k
y+ 1, we have

H0(ωPn ⊗OPn(l)⊗ J (G)) = χ(ωPn ⊗OPn(l)⊗ J (G)) = P (l)

is a polynomial of degree n. So P (l) has at most n zeroes and hence
H0(ωPn ⊗OPn(l)⊗ J (G)) 6= 0 for some l ≤ xdn

k
y+ n+ 1. �

Remark 3.13. Conjecturally, one should be able to produce a hyper-
surface of degree ≤ xdn

k
y − n vanishing along S. It is hard to find

interesting examples for a hypersurface D as above. It is maybe more
25



interesting to think of the above theorem as giving necessary conditions
for such a hypersurface to exist.

The next application is due to J. Kollár.

Theorem 3.14. Let (A,Θ) be a principally polarized abelian variety (in
particular A is a complex torus, Θ ∈ Div(X) is ample and h0(OA(Θ)) =
1). Then (A,Θ) is log canonical (i.e. J ((1 − ε)Θ) = OA for any
0 < ε� 1).

In particular multx Θ ≤ dimA for any point x ∈ A.

Proof. Consider the short exact sequence

0→ OA(Θ)⊗ J ((1− ε)Θ)→ OA(Θ)→ OZ(Θ)→ 0

where Z = Z(J ((1 − ε)Θ)). By (3.7), we have H1(OA(Θ) ⊗ J ((1 −
ε)Θ)) = 0 so that H0(OA(Θ))→ H0(OZ(Θ)) is surjective. By (3) and
(1) of (3.5), we have

IZ = J ((1− ε)Θ) ⊂ J (Θ) = IΘ.

It then follows that H0(OZ(Θ)) = 0. By semicontinuity, for general
x ∈ A, we have H0(OZ(t∗xΘ)) = 0 where tx denotes translation by
x ∈ A. But then a general translate of Θ vanishes along Z so that
Z = ∅. �

Remark 3.15. The same proof shows that if D ∈ |mΘ|, then (A, 1
m
D)

is log canonical and hence multZ(D) ≤ m(n − k) where Z ⊂ X is a
subvariety of dimension k. It is also known that equality holds if and
only if (A,Θ) ∼= (A′,Θ′) × (A′′,Θ′′) where (A′,Θ′) is the product of
n− k principally polarized elliptic curves.

3.2. Further properties of multiplier ideal sheaves.

Theorem 3.16. Let X be a smooth quasi-projective variety and 0 ≤
D ∈ DivR(X). If H is a smooth irreducible divisor on X not contained
in the support of D, then

J (H,D|H) ⊂ J (X,D) · OH
where J (X,D) · OH := Im(J (X,D) ↪→ OX → OH) ⊂ OH .

Moreover, if 0 < s < 1, then for all 0 < t� 1 we have

J (X,D + (1− t)H) · OH ⊂ J (H, (1− s)D|H).

Proof. Let f : Y → X be a log resolution of (X,D + H) and write
f ∗H = H ′ +

∑
ajEj where H ′ = (f−1)∗H, aj ≥ 0 and Ej are excep-

tional. We may assume that g = f |H′ : H ′ → H is a log resolution of
(H,D|H). By adjunction KH′ = (KY +H ′)|H′ and KH = (KX +H)|H ,
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so that KH′/H = (KY/X −
∑
ajEj)|H′ . Consider the short exact se-

quence

0→ OY (KY/X − xf ∗Dy− f ∗H)→ OY (KY/X − xf ∗Dy−
∑

ajEj)

→ OH′(KH′/H + xf ∗D|Hy)→ 0.

Since −xf ∗Dy − f ∗H ∼Q,f {f ∗D}, we have that R1f∗OY (KY/X −
xf ∗Dy− f ∗H) = 0 cf. (2.41). Therefore there is a surjection

f∗OY (KY/X−xf ∗Dy−
∑

ajEj)→ g∗OH′(KH′/H+xf ∗D|H′y) = J (H,D|H).

The first assertion now follows as

J (X,D) = f∗OY (KY/X − xf ∗Dy) ⊃ f∗OY (KY/X − xf ∗Dy−
∑

ajEj).

To see the second assertion, note that

J (X,D + (1− t)H) = f∗OY (KY/X − xf ∗((1− t)H +D)y)

and

J (H, (1− s)D|H) = g∗OH′(KH′/H − xg∗((1− s)D|H)y).

Therefore, if E ⊂ Y is any divisor on Y with multE∩H′(KH′/H−f ∗((1−
s)D|H)) ≤ −1, then we must show that

multE(KY/X−xf ∗((1−t)H+D)y) ≤ multE∩H′(KH′/H−xf ∗((1−s)D|H)y).

Let k = multE(KY/X), a = multE(f ∗H) and d = multE(f ∗D), then we
must show that

k − x(1− t)a+ dy ≤ k − a− x(1− s)dy.
But for 0 < t ≤ sd

a
, the equation is easily seen to hold. �

Corollary 3.17. [Inversion of adjunction] If J (H,D|H) = OH near
a point x ∈ H, then J (X,D) = OX near x ∈ X. In other words
(H,D|H) is kawamata log terminal near x then (X,D) is kawamata log
terminal near x.

Corollary 3.18. [Inversion of adjunction II] If J (H, (1−s)D|H) ⊂ mx

for a point x ∈ H and any number 0 < s < 1, then J (X,D + (1 −
t)H) ⊂ mx for any 0 < t� 1. In other words, if (H, (1−s)D|H) is not
kawamata log terminal near x then (X,D+ (1− t)H) is not kawamata
log terminal near x.

Remark 3.19. A more general version of inversion of adjunction is
the following. Let (X,S + B) be a pair such that S is a prime divisor
not contained in the support of B, let ν : S ′ → S be the normalization
of S and (S ′, B′) be the log pair defined by the adjunction formula
ν∗(KX + S +B) = KS′ +B′. Then
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(1) (X,S+B) is purely log terminal if and only if (S ′, B′) is kawa-
mata log terminal, and

(2) (X,S+B) is log canonical if and only if (S ′, B′) is log canonical.

The implications (X,S + B) is purely log terminal (resp. log canoni-
cal) implies that (S ′, B′) is kawamata log terminal (resp. log canonical)
is easy to see. The implication (S ′, B′) is kawamata log terminal im-
plies (X,S +B) is purely log terminal follows from the Connectedness
Lemma. The implication (S ′, B′) is log canonical implies (X,S+B) is
log canonical is a deep result due to Kawakita.

Corollary 3.20. If X is a smooth quasi-projective variety, 0 ≤ D ∈
DivQ(X) and multx(D) < 1, then

J (X,D)x = Ox,X .

Proof. We proceed by induction on n = dimX. The case n = 1 is clear.
Assume n > 1 and fix x ∈ H ⊂ X a smooth divisor not contained in
the support of D. For a general choice of H, we have multx(D|H) =
multx(D) < 1. Therefore, J (H,D|H)x = Ox,H and by (3.17), it follows
that J (X,D)x = Ox,X . �

Proposition 3.21. Let X be a smooth variety, 0 ≤ D ∈ DivR(X) and
Z ⊂ X an irreducible subvariety of dimension d such that (X,D) is
log canonical at the general point z of Z and Z is a non Kawamata log
terminal center for (X,D). If B is an effective divisor whose support
does not contain Z and such that

multz(B|Z) > d,

then for any 0 < ε� 1, we have

J (X, (1− ε)D +B) ⊂ mz.

Proof. Let f : Y → X be a log resolution of (X,D), then there is
a divisor E ⊂ Y with center Z such that aE(X,D) = −1. We let
k = multE(KY/X) so that multE(f ∗D) = k+ 1. Since z ∈ Z is general,
we may assume that f |E is smooth over z and we let Ez be the fiber
over z. We have

J (X, (1− ε)D +B) = f∗J (Y, f ∗((1− ε)D +B)−KY/X).

Since multE(B|Z) > d, it follows that

multEz(f
∗((1− ε)D +B)−KY/X) ≥ d+ 1 = codimYEz.

By (3.5), we have J (Y, f ∗((1 − ε)D + B) − KY/X) ⊂ IEz and the
proposition follows easily. �
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Theorem 3.22. [Subadditivity for multiplier ideal sheaves] Let X be a
smooth variety, 0 ≤ Di ∈ DivR(X). Then

J (D1 +D2) ⊂ J (D1) · J (D2).

Proof. See [12, 9.5.20]. �

Theorem 3.23. Let π : X → T be a surjective morphism of smooth
varieties. Then

(1) for general t ∈ T we have J (Xt, D|Xt) = J (X,D) · OXt, and
(2) if dimT = 1, X0 is a divisor contained in the fiber over 0 ∈ T

and there is a section g : T → X such that g(0) ∈ X0 and

J (Xt, D|Xt) ⊂ mg(t) for t ∈ T − 0

then J (X0, D|X0) ⊂ mg(0).

Proof. Since the assertion is local, we may assume that X is affine. Let
f : Y → X be a log resolution of (X,D), then π ◦ f is smooth over an
open subset U of T and the simple normal crossings divisor given by
the support of f ∗D and the exceptional locus of f , meets each fiber Yt
transversely for any t ∈ U . Then

(f ∗D)|Yt = (f |Yt)∗(D|Xt) and KY/X |Yt = KYt/Xt .

Consider now the short exact sequence

0→ OY (KY/X−xf ∗Dy)⊗IYt → OY (KY/X−xf ∗Dy)→ OYt(KY/X−xf ∗Dy)→ 0.

Since Yt is obtained by intersecting the pull-backs of dimT general
hypersurfaces of T containing t, one can show that R1f∗(OY (KY/X −
xf ∗Dy)⊗ IYt) = 0 and hence the homomorphism

J (X,D)→ J (Xt, D|Xt)
is surjective and (1) follows.

For (2), notice that by (1), there is an open subset U of T such that
over U we have an inclusion J (X,D) ⊂ Ig(T ). Since the zero set of
J (X,D) is closed, the above inclusion holds over T . By (3.16), we
have

J (X0, D|X0) ⊂ J (X,D) · OX0 ⊂ Ig(0)

as required. �

3.3. The theorem of Anhern and Siu. Recall the following.

Conjecture 3.24 (Fujita’s conjecture). Let X be a smooth projective
variety of dimension n and A be an ample line bundle, then KX + (n+
1)A is generated.
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Remark 3.25. By a result of Kawamata, the conjecture is true in
dimension ≤ 4. It is also conjectured that that KX + (n + 2)A is very
ample and that if A2 ≥ 2, then KX + nA is generated.

While this appears to be a very bold conjecture, there is the following
important result that works in all dimensions.

Theorem 3.26. Let x ∈ X be a point on a smooth projective variety of
dimension n and A be an ample line bundle such that for any subvariety
x ∈ Z ⊂ X, we have

AdimZ · Z > (
n2 + n

2
)dimZ .

Then KX + A is generated at x.

Proof. It suffices to show that there is a divisor D ∼Q cA such that
c < 1 and x is an isolated component of Z(J (D)). By (3.7), it then
follows that the map

H0(OX(KX + A))→ H0(OX(KX + A)/OX(KX + A)⊗ J (D))

is surjective. The theorem then follows as H0(OX(KX +A)/OX(KX +
A)⊗ J (D)) surjects on to H0(OX(KX + A)/OX(KX + A)⊗mx).

In order to construct such a divisor, we will need several intermediate
results.

Lemma 3.27. [Constructing singular divisors] Let x ∈ V be a smooth
point on an irreducible projective variety of dimension d, 0 < a ∈ Q
and A an ample Cartier divisor on V such that Ad > ad. Then, for
any k � 0, there exists a divisor Ak ∈ |kA| such that multx(A) > ka.

Proof. This follows easily as by (1.19), for k � 0 we have

h0(OV (kA)) =
kdAd

d!
+O(kd−1)

and the number of conditions required to vanish to order ≥ m at the
smooth point x ∈ V is(

d+m− 1

d

)
=
md

d!
+O(md−1).

�

Therefore, we may find a divisor D1 ∼Q c1A with multx(D1) ≥ n

and c1 <
n
M

where M = n2+n
2

. Therefore (X,D1) is not kawamata log
terminal at x i.e. J (X,D1)x 6= Ox,X . Replacing D1 by λD1 (where λ =
cx(X, 0;D1) is the log canonical threshold) we may assume that (X,D1)
is log canonical but not kawamata log terminal at x. Perturbing D1
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by a general element of A, we may assume that (X,D1) has a unique
center of non kawamata log terminal singularities Z1 at x.

We now proceed to show by induction on dimZ that for any k > 0
there exists a Q-divisor Dk ∼Q ckA such that

(1) (X,Dk) is log canonical but not kawamata log terminal at x,
(2) (X,Dk) has a unique center of non kawamata log terminal sin-

gularities Zk 6= ∅ at x with dimZk ≤ n− k, and
(3) ck <

1
M

∑k
i=1(n− i+ 1).

The case k = 1 has already been established. Assume now that we
have constructed Dk as above. Let g : T → Zk be the normalization
of a general curve containing x. For general t ∈ T , the point z =
g(t) ∈ Zk is a general point. By (3.27), there is a divisor Gt ∼Q
gA|Zk such that multg(t) Gt > dimZk and g < k

M
. As A is ample, by

(1.19) H1(OX(mA)⊗ IZk) = 0 for all m� 0 so that H0(OX(mA))→
H0(OZk(mA)) is surjective. Therefore, there is a divisor G′t ∼Q gA
such that G′t|Zk = Gt. We may assume that there exists 0 < m ∈ Z
such that mG′t ∼ mA. After replacing T by a finite cover, we may
assume that there is a divisor mG′ ∼ p∗XmA ∈ Div(X × T ) such that
G′t = G′|X×t for any t ∈ T − 0 and a section γ : T → X × T such that
γ(0) = (x, 0), for general t ∈ T , pX(γ(t)) is a general point of Zk and

multpX(γ(t))(G
′
t|Zk) > dimZk.

By (3.22)
J (X, (1− ε)Dk +G′t) ⊂ mpX(γ(t))

for 0 < ε � 1 and general t ∈ T . By (3.23), we have that J (X, (1 −
ε)Dk + G′0) ⊂ mx. Since OX(mA)⊗ IZk is generated, we may assume
that the zeroes of

J (X,Dk +G′0)

are contained in Zk. It follows that

J ((1− ε)Dk +G′0) ⊂ mx

and that the zeroes of J ((1 − ε)Dk + G′0) are strictly contained in
Zk. After peturbing (1 − ε)Dk + G′0 by a general ample divisor and
multiplying it by the log canonical threshold, we obtain a divisor Dk+1

with the required properties. �

3.4. Asymptotic multiplier ideal sheaves.

Definition 3.28. Let X be a smooth projective variety, D ∈ Div(X)
be a divisor such that κ(D) ≥ 0. Then there exists an integers e =
e(D) > 0 and m0 = m0(D) such that if m ≥ m0, then

H0(OX(mD)) 6= 0 if and only if e divides m.
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The integer e(D) is the exponent of D and the integer m0(D) is the
Iitaka threshold of D.

Exercise 3.29. If D is big, then e(D) = 1.

Lemma 3.30. Let X be a smooth projective variety, D ∈ Div(X) be
a divisor such that h0(OX(mD)) ≥ 0 for an integer m > 0. Then for
any numbers 0 < c ∈ R and 0 < k ∈ Z, we have

J (
c

m
· |mD|) ⊂ J (

c

mk
· |mkD|).

Proof. This is an easy excercise that follows from the inclusion of linear
series k|mD| ⊂ |kmD|. �

Definition 3.31. Let D ∈ Div(X) be a divisor such that κ(D) ≥ 0 and
0 < c ∈ R, then we define the asymptotic multiplier ideal sheaf of
D by

J (c · ||D||) = ∪m∈IJ (
c

m
· |mD|)

where I = {m ≥ m0(D)|e(D) divides m}. Notice that as X is Noe-
therian, we have J (c · ||D||) = J ( c

m
· |mD|) for any m > 0 sufficiently

divisible.

One of the reasons for introducing asymptotic multiplier ideal sheaves
is that they satisfy many useful formal properties.

Proposition 3.32. Let L ∈ Div(X) be a divisor such that κ(L) ≥ 0,
0 < m, l ∈ Z and 0 < c ∈ R, then

(1) J (c · ||mL||) = J (cm · ||L||),
(2) J (c · ||(m+ 1)L||) ⊂ J (c · ||mL||),
(3) bl · J (||mL||) ⊂ J (||(m+ l)L||),
(4) H0(OX(mL)⊗ J (||mL||)) ∼= H0(OX(mL)), and
(5) J (c · ||mL||) = J ( c

mp
· |D|) where D ∈ |mpL| is general.

Proof. We may pick p > 0 such that J (c · ||mL||) = J ( cp
p
· |mpL|) and

J (cm · ||L||) = J ( cmp
pm
· |pmL|). (1) follows immediately.

By (1) and (3.5), we have that

J (c · ||mL||) = J (cm · ||L||) ⊃ J (c(m+ 1) · ||L||) = J (c · ||(m+ 1)L||).

Hence (2).
To see (3), consider f : Y → X a log resolution of (X, |tL|) for

t ∈ {l, pm, pl, p(m+ l)}. We write f ∗|tL| = Vt +Ft where Vt is free and
Ft = Fix(f ∗|tL|). If p > 0 is sufficiently divisible, we have

pFl + Fmp ≥ Fpl + Fmp ≥ Fp(m+l),
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so that

−Fl −
1

p
xFmpy ≤ −x

1

p
Fp(m+l)y.

It follows that

bl · J (||mL||) ⊂ f∗OY (KY/X − Fl −
1

p
xFmpy)

⊂ f∗OY (KY/X − x
1

p
Fp(m+l)y) = J (||(m+ l)L||).

(4) follows as by (3), we have bm ⊂ J (||mL||).
To see (5), consider a log resolution f : Y → X of (X, |mpL|) for

any p > 0 sufficiently divisible. Then f ∗|mpL| = Vmp + Fmp where
Fmp = Fix(f ∗|mpL|). But then f ∗D = D′ + Fmp where D′ is a smooth
divisor, and so x 1

mp
(D′ + Fmp)y = x 1

mp
Fmpy and the assertion follows

easily. �

Theorem 3.33 (Subadditivity for asymptotic multiplier ideal sheaves.).
Let L ∈ Div(X) be a divisor such that κ(L) ≥ 0, 0 < m, l ∈ Z and
0 < c ∈ R, then

J (c · ||(m+ l)L||) ⊂ J (c · ||mL||) · J (c · ||lL||).
In particular J (c · ||mL||) ⊂ J (c · ||L||)m.

Proof. Let p > 0 be sufficiently divisible and D ∈ |ml(m + l)pL| be
general. Then

J (c · ||(m+ l)L||) = J (
c

mpl
D) = J (

c(m+ l)

mlp(m+ l)
D) ⊂

J (
cm

mlp(m+ l)
D) · J (

cl

mlp(m+ l)
D) = J (c · ||mL||) · J (c · ||lL||).

�

Remark 3.34. Note that we have used (3.22) which states that if 0 ≤
Di ∈ Div(X), then J (D1 + D2) ⊂ J (D1) · J (D2). However, it is not
the case that J (|D1 + D2|) ⊂ J (|D1|) · J (|D2|) (eg. let Di be general
points on an elliptic curve E, then J (|Di|) = J (Di) = OE(−Di) but
|D1 +D2| is free so that J (|D1 +D2|) = OE).

The following result is due to Wilson.

Proposition 3.35. Let D ∈ Div(X) be nef and big divisor on a smooth
projective variety. Then there exists an integer m0 > 0 and a divisor
N ∈ Div(X) such that |mD − N | is free for all m ≥ m0. In partic-
ular if x ∈ X and G ∈ |mD| is general, then multxG is bounded (by
multx(N)).
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Proof. Let H ∈ Div(X) be sufficiently ample. Since D is big, there is
an integer m0 > 0 such that (n + 1)H + N ∼ m0D for some 0 ≤ N ∈
Div(X). For any m0 ≤ m ∈ Z, we have

mD −N = (m−m0)D + (n+ 1)H.

By (3.8), mD −N is free. �

Proposition 3.36. Let D ∈ Div(X) be a big divisor on a smooth
projective variety. Then D is nef if and only if J (||mD||) = OX for
all m ≥ 1.

Proof. Assume that D is nef. Fix any m ≥ 1. We have

J (||mD||) = J (
1

k
· |mkD|) = J (

1

k
Dk)

where k > 0 is sufficiently divisible and Dk is general in |mkD|. By
(3.35), we may assume that multx(

1
k
Dk) < 1 for all x ∈ X so that

J ( 1
k
Dk) = OX .

Assume now that J (||mD||) = OX for all m ≥ 1. Fix B a very
ample divisor. By (3.8)

OX(KX + (n+ 1)B +mD)⊗J (||mD||) = OX(KX + (n+ 1)B +mD)

is generated by global sections. If C ⊂ X is any curve, then D · C ≥
− 1
m

(KX + (n+ 1)B) · C. As

lim
m→+∞

− 1

m
(KX + (n+ 1)B) · C = 0,

it follows that D · C ≥ 0 and so D is nef. �

The next application concerns the diminished stable base locus of a
pseudo-effective divisor D ∈ Div(X) which is defined by

B−(D) = ∪0<ε∈QSBs(D + εA)

where A is any fixed divisor.

Exercise 3.37. Show that the above definition is independent of A.

Exercise 3.38. Show that if 0 < ε1 ≤ ε2 ∈ Q then SBs(D + ε2A) ⊂
SBs(D+ ε1A) so that B−(D) is a countable union of subvarieties of X.

Proposition 3.39. Let D ∈ Div(X) be a pseudoeffective divisor on a
smooth projective variety and Z ⊂ X be a subvariety. If

lim
1

m!
multZ(|m!D|) = 0,

then Z is not contained in B−(D).
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Proof. If A ∈ Div(X) is ample and m is sufficiently large, then by (3.8),
OX(m(D + A)) ⊗ J (||mD||) is generated by global sections. Notice
that J (||mD||) = J (1

p
Dp) where Dp ∈ |mpD| is general and p > 0 is

sufficiently divisible. Since p is sufficiently divisible, then 1
p

multZ Dp <

1 and so IZ 6⊂ J (||mD||). �

3.5. Adjoint ideal sheaves.

Definition 3.40. Let (X,D) be a log smooth pair where D is a reduced
divisor, 0 < c ∈ R and let V be a linear system whose base locus
contains no log canonical centers of (X,D). For any log resolution
f : Y → X of (X,D+|V |), we write f ∗D = M+F where F = Fix(f ∗V )
and M is free.

We define the multiplier ideal sheaf

JD,c·V := f∗OY (EY (X,D)− xcFy).
If B = cG where 0 < G ∈ Div(X), then we define JD,B := JD,c·V
where V = {G}.

Lemma 3.41. The above definition is independent of the log resolution
f : Y → X.

Proof. Given two log resolutions of (X,D + |V |), f : Y → X and
f ′ : Y ′ → X we may assume that f ′ = f ◦ ν where ν : Y ′ → Y . Then
ν∗M is free and ν∗F = Fix(ν∗f ∗V ). We let EY ′ = EY ′(X,D) and
similarly for Y and Γ. We have

= EY ′ − cν∗F = KY ′ + ΓY ′ − f ′∗(KX +D)− cν∗F
= KY ′ + ΓY ′ − ν∗(KY + ΓY − EY + cF )

= ν∗(E − xcFy) +KY ′ + ΓY ′ − ν∗(KY + ΓY + {cF})
One sees that (Y,ΓY + {cF}) is log canonical and its log canonical
places coincide with those of (Y,ΓY ) and hence with those of (X,D).
It follows that the divisor

G = pKY ′ + ΓY ′ − ν∗(KY + ΓY + {cF})q
is effective and ν exceptional. Therefore

f ′∗OY ′(pEY ′ − cν∗Fq) = f∗(ν∗OY ′(pEY ′ − cν∗Fq)
= f∗(ν∗OY ′(ν∗(pEY − cFq) +G) = f∗(OY (pEY − cFq)).

�

Lemma 3.42. Let (X,D) be a log smooth pair where D is a reduced
divisor, 0 < c ∈ R and let V (resp. 0 ≤ G,H ∈ DivR(X)) be a linear
system whose base locus (resp. a divisors whose support) contains no
log canonical centers of (X,D). Then
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(1) JD,G = OX if and only if (X,D+G) is divisorially log terminal
and xD +Gy = xDy.

(2) If 0 ≤ D′ ≤ D and D′ is a reduced divisor, then JD,c·V ⊂
JD′,c·V .

(3) If 0 ≤ Σ ∈ Div(X), H ≤ G + Σ and JD,G = OX then IΣ ⊂
JD,H .

Proof. (1) and (2) follow easily from the definitions.
To see (3), let f : Y → X be a log resolution of (X,D+G+H + Σ).

As Σ ∈ Div(X), we have

xf ∗Hy ≤ xf ∗Gy+ f ∗Σ.

As JD,G = OX , it follows that

EY (X,D)− xf ∗Gy ≥ 0.

Therefore, we have that

−f ∗Σ ≤ xf ∗Gy−xf ∗Hy = (xf ∗Gy−EY )+(EY−xf ∗Hy) ≤ EY−xf ∗Hy.
Therefore

IΣ = f∗OY (−f ∗Σ) ⊂ f∗OY (EY − bf ∗Hc) = JD,H .
�

Theorem 3.43. [Nadel Vanishing for adjoint ideals] Let π : X → Z be
a projective morphism to a normal affine variety. Assume that (X,D)
is a log smooth pair where D is reduced and 0 ≤ G ∈ DivR(X) is a
divisor whose support contains no centers of NKLT(X,D).

If N ∈ Div(X) and N −G is ample, then

Riπ∗JD,G(KX +D +N) = 0 ∀ i > 0.

Proof. Let f : Y → X be a log resolution of (X,D + G). By [14] we
may assume that f is an isomorphism at a general point of each log
canonical center of (X,D). We have

f ∗(KX +D +N) + E − xf ∗Gy = KY + Γ + {f ∗G}+ f ∗(N −G)

where E = EY (X,D) and Γ = ΓY (X,D). By (2.43), we have that
Rif∗OY (KY + Γ + {f ∗G} + f ∗(N − G)) = 0 for i > 0 and Ri(π ◦
f)∗OY (KY + Γ + {f ∗G}+ f ∗(N −G)) = 0 for i > 0. Since f∗OY (KY +
Γ + {f ∗G}+ f ∗(N −G)) = JD,G(KX +D+N), the claim follows from
an easy spectral sequence argument. �

Lemma 3.44. Let π : X → Z be a projective morphism to a normal
affine variety. Assume that (X,D) is a log smooth pair where D is
reduced, S is a component of D and G ∈ DivR(X) is effective and its
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support contains no centers of NKLT(X,D). Then there is a short
exact sequence

0→ JD−S,G+S → JD,G → J(D−S)|S ,G|S → 0.

If moreover, N ∈ Div(X) and N − G − (KX + D) is ample, then the
homomorphism

π∗JD,G(N)→ π∗J(D−S)|S ,G|S(N)

is surjective.

Proof. Let f : Y → X be a log resolution of (X,D + G). By [14] we
may assume that f is an isomorphism at a general point of each log
canonical center of (X,D). Let T = (f−1)∗S and consider the short
exact sequence

0→ OY (E − xf ∗Gy− T )→ OY (E − xf ∗Gy)→ OT (E − xf ∗Gy)→ 0

where E = EY (X,D). Let Γ = ΓY (X,D). Since

E − f ∗G− T = (KY + Γ− T )− f ∗(KX +D − S + (G+ S)),

we have

E − f ∗G− T = EY (X,D − S)− f ∗(G+ S)

and

(E − f ∗G)|T = KT + (Γ− T )|T − f ∗(KS + (D − S +G)|S)

= ET (S, (D − S)|S)− f ∗(G|S).

Since pE − f ∗G− Tq ∼f KY + Γ− T + {f ∗G}, by (2.43)

R1f∗OY (pE − f ∗G− Tq) = 0.

Therefore, pushing forward the above exact sequence via f , we ob-
tain the required short exact sequence. The surjection π∗JD,G →
π∗J(D−S)|S ,G|S follows by (2.43) as

f ∗N + pE − f ∗G− Tq ∼

(KY + Γ− T ) + f ∗(N −KX −D −G) + {f ∗G}.
�

Exercise 3.45. Use (3.44) to reprove (3.41).

The next result is sometimes referred to as the process of “squeezing
out the extra positivity”. Roughly speaking it says that under appro-
priate hypothesis, if N is the multiple of an adjoint bundle, S ⊂ X is a
divisor and H is an ample line bundle, such that sections of (mN+H)|S
extend for m� 0, then sections of N |S also extend.
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Theorem 3.46. Let π : X → Z be a projective morphism to a normal
affine variety. Assume that (X,D = S + A + B) is a log pair where
xDy = S, X and S are smooth and 0 ≤ A,B ∈ DivQ(X). Let 0 <
k ∈ Z, C = 1

k
A and 0 ≤ Φ ≤ Ω = (D − S)|S be a Q-divisor such that

k(KS + Φ) and k(KX +D) are integral.
If there is an integer m > 1 divisible by k and a divisor 0 ≤ P ∈

Div(X) such that C − k−1
m
P is ample, mC ∈ Div(X), the pair (X,D+

k−1
m
P ) is purely log terminal and

m

k
|k(KS + Φ)|+m(Ω− Φ + C|S) + P |S ⊂ |m(KX +D + C) + P |S,

then

|k(KS + Φ)|+ k(Ω− Φ) ⊂ |k(KX +D)|S.

Proof. Pick any divisor Σ ∈ |k(KS + Φ)|, then there exists a divisor

G ∈ |m(KX+D+C)+P | with G|S =
m

k
Σ+m(Ω−Φ+C|S)+P |S.

We define

Λ =
k − 1

m
G+B and N = k(KX +D)−KX − S.

Since Λ ≥ 0, S 6⊂ Supp(Λ) and N −Λ ∼Q C − k−1
m
P is ample, then by

(3.7), the homomorphism

H0(X,OX(k(KX +D)))→ H0(S,OS(k(KS + Ω))⊗ JΛ|S)

is surjective. It suffices then to check that Σ +k(Ω + Φ) vanishes along
the ideal JΛ|S . This follows by (3.42) since (S,Ω + k−1

m
P |S) is klt (as

(X,D + k−1
m
P ) is purely log terminal) and

Λ|S − (Σ + k(Ω− Φ))

=
k − 1

m
(
m

k
Σ +m(Ω− Φ + C|S) + P |S) +B|S − (Σ + k(Ω− Φ))

≤ Ω +
k − 1

m
P |S.

�

3.6. Asymptotic multiplier ideal sheaves II.

Definition 3.47. Let X be a normal variety and D ∈ Div(X). An
additive sequence of linear systems associated to D is a sequence
of sublinear series Vi ⊂ |iD| such that

Vi + Vj ⊂ Vi+j.
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Definition 3.48. Suppose that (X,D) is a log smooth pair and D is
reduced. If V• is an additive sequence of linear systems (associated to
a divisor G) such that for some 0 < m ∈ Z no non kawamata log
terminal center of (X,D) is contained in Bs(Vm) then we define the
asymtotic multiplier ideal sheaf of c · V• with respect to (X,D) by

JD,c·V• = ∪p>0JD, c
p
·Vp .

If Vm = |mG|, we let

JD,c·||G|| = JD,c·V•
and if S is a component of D and Wm = |mD|S we let

J(D−S)|S ,c·||G||S = J(D−S)|S ,c·W• .

Exercise 3.49. Show that if q divides p and m divides q, then

JD, c
p
·Vp ⊃ JD, cq ·Vq

and therefore,

JD,c·V• = JD, c
p
·Vp

for any p > 0 sufficiently divisible.

Exercise 3.50. Show that J(D−S)|S ,c·||G||S ⊂ J(D−S)|S ,c·||G|S ||.

We will need the following preliminary results.

Lemma 3.51. Let π : X → Z be a projective morphism to a normal
affine variety and G ∈ DivQ(X). If (X,D) is a log smooth pair, D is
reduced and SBs(G) does not contain any non kawamata log terminal
center of (X,D), then

(1) for any 0 < c1 ≤ c2 ∈ R, we have

JD,c2·||G|| ⊂ JD,c1·||G||
(2) if G ∈ Div(X) and S is a component of D, then

Im (π∗OX(G)→ OS(G)) ⊂ π∗J(D−S)|S ,||G||S(G).

Proof. (1) follows easily from the definitions.
To see (2), let 0 < p ∈ Z such that

J(D−S)|S , 1p ·|pG|S
= J(D−S)|S ,||G||S

and consider f : Y → X a log resolution of |G| + D and of |pG| + D.
Let T = (f−1)∗S. We let Fi = Fix(f ∗|iG|). Then by definition of F1,
we have

(π ◦ f)∗OY (f ∗G− F1) = π∗OX(G) = (π ◦ f)∗OY (EY (X,D) + f ∗G).
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We also have inequalities

f ∗G− F1 ≤ f ∗G− x1

p
Fpy ≤ EY + f ∗G− x1

p
Fpy ≤ EY + f ∗G.

Pushing forward, one sees that

π∗OX(G) = (π ◦ f)∗OY (EY + f ∗G− x1

p
Fpy)

and so the image of π∗OX(G) is contained in

(π ◦ f)∗OT (EY + f ∗G− x1

p
Fpy) = π∗J(D−S)|S ,||G||S(G).

�

Lemma 3.52. Let π : X → Z be a projective morphism to a normal
affine variety and G ∈ DivQ(X). If (X,D) is a log smooth pair, D
is reduced, S is a component of D and B+(G)1 contains no centers of
NKLT(X,D), then for any p ∈ N sufficiently divisible and B ∈ |pG|
general, we have

Riπ∗JD−S, 1
p
B+S(KX +D +G) = 0 for i > 0, and

π∗J(D−S)|S ,||G||S(KS + (D − S)|S +G|S) ⊂

Im (π∗OX(KX +D +G)→ π∗OS(KS + (D − S)|S +G|S)) .

Proof. If 0 < p ∈ Z is sufficiently divisible and B ∈ |pG| is general,
then

JD,||G|| = JD, 1
p
|pG| = JD, 1

p
B and

J(D−S)|S ,||G||S = J(D−S)|S , 1p |pG|S
= J(D−S)|S , 1pB|S

.

By (3.44), we have a short exact sequence

0→ JD−S, 1
p
B+S → JD, 1

p
B → J(D−S)|S , 1pB|S

→ 0.

Let f : Y → X be a log resolution of (X,D + |pG|) which is an
isomorphism at a general point of each center of NKLT(X,D), then
(as in the proof of (3.44))

JD−S, 1
p
B+S = f∗OY (EY (X,D)− T − x1

p
f ∗By).

Notice that if M = f ∗|pG|−Fix(f ∗|pG|), then {1
p
f ∗B} ≥ 1

p
M and 1

p
M

is nef and its restriction to any center in NKLT(Y,ΓY ) is big (we may

1Recall that B+(G) = ∩ε>0SBs(G− εA) = SBs(G− ε′A) for any 0 < ε′ � 1.
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in fact assume that M ∼Q f
∗A+ E where A ∈ DivQ(X) is ample and

E ≥ 0 contains no centers of (Y,ΓY (X,D))). Since

EY (X,D)− T − x1

p
f ∗By+ f ∗(KX +D +G)

∼Q KY + ΓY (X,D)− T + f ∗(G− 1

p
B) + {1

p
f ∗B},

by (2.43), we have that for any i > 0

Riπ∗JD−S, 1
p
B+S(KX +D +G) =

Ri(f ◦ π)∗OY (EY (X,D)− T − x1

p
f ∗By+ f ∗(KX +D +G)) = 0.

�

4. Extension Theorems and applications

Theorem 4.1. Let π : X → Z be a projective morphism to a normal
affine variety. Let (X,D = S + B) be a log smooth log canonical pair
of dimension n, 0 < k ∈ Z such that k(KX + D) ∈ Div(X) and S
an irreducible component of xDy. If the stable base locus of KX + D
contains no centers in NKLT(X, pDq) and A is any sufficiently ample
divisor on X then

]m J||mk(KX+D)|S || ⊂ J(dDe−S)|S ,||mk(KX+D)+A||S

holds for all m ∈ N, and π∗J||mk(KX+D)|S ||(mk(KX + D) + A) is con-
tained in the image of the homomorphism

π∗OX(mk(KX +D) + A)→ π∗OS(mk(KX +D) + A).

Proof. We begin by proving the first statement by induction on m ≥ 0.
The case m = 0 is clear. We will show that ]m implies ]m+1. Write
D =

∑
diDi and for 1 ≤ s ≤ k let

S ≤ D1 ≤ D2 ≤ . . . ≤ Dk = pDq

be the (uniquely defined) reduced divisors such that

kD =
k∑
s=1

Ds.

Let Ns ∈ Div(X) be the divisors defined by N0 = 0 and

Ns+1 = KX +Ds+1 +Ns for 0 ≤ s ≤ k − 1.

In particular Nk = k(KX +D). We will show that there are inclusions

?s J||mk(KX+D)|S || ⊂ J(Ds+1−S)|S ,||mk(KX+D)+Ns+A||S for 0 ≤ s ≤ k.
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]m+1 then follows since by (3.32), we have

J||(m+1)k(KX+D)|S || ⊂ J||mk(KX+D)|S ||.

?0 follows since by ]m and by (3.42), we have

J||mk(KX+D)|S || ⊂ J(pDq−S)|S ,||mk(KX+D)+A||S ⊂ J(D1−S)|S ,||mk(KX+D)+A||S .

Suppose now that ?t−1 holds. We have

π∗J||mk(KX+D)|S ||(mk(KX +D) +Nt + A)

⊂ π∗J(Dt−S)|S ,||mk(KX+D)+Nt−1+A||S(mk(KX +D) +Nt + A)

⊂ Im (π∗OX(mk(KX +D) +Nt + A)→ π∗OS(mk(KX +D) +Nt + A))

⊂ π∗J(Dt+1−S)|S ,||mk(KX+D)+Nt+A||S(mk(KX +D) +Nt + A).

The first inclusion follows by ?t−1, the second inclusion follows from
(3.52) and the third one from (3.51). By (3.8), J||mk(KX+D)|S ||(mk(KX+
D) +Nt + A) is generated by global sections and so

J||mk(KX+D)|S || ⊂ J(Dt+1−S)|S ,||mk(KX+D)+Nt+A||S .

This completes the proof. �

Theorem 4.2. Let π : X → Z be a projective morphism to a normal
affine variety. Let (X,D = S +A+B) be a purely log terminal pair of
dimension n where X and S are smooth, D ∈ DivQ(X), xDy = S, A
is a general ample Q-divisor, (S,Ω = (D − S)|S) is canonical and the
stable base locus of KX + D does not contain S. For any sufficiently
divisible m > 0, let

Fm = Fix(|m(KX +D)|S)/m

and F = limFm!.
If 0 < ε ∈ Q is such that ε(KX +D) +A is ample, Φ ∈ DivQ(S) and

0 < k ∈ Z such that

(1) kD ∈ Div(X) and kΦ ∈ Div(S), and
(2) Ω ∧ λF ≤ Φ ≤ Ω where λ = 1− ε/k,

then

|k(KS + Ω− Φ)|+ kΦ ⊂ |k(KX +D)|S.

Proof. Pick a general ample divisor C ∼Q A/k so that (X,D+(k−1)C)
is purely log terminal and (S,Ω +C|S) is canonical. Pick ε/k < η ∈ Q
so that η(KX + D) + C is ample. If 0 < l ∈ Z is sufficiently divisible
so that O = l(η(KX +D) + C) is very ample, then

Fix(|l(KX +D + C)|S)/l = Fix(|l(1− η)(KX +D) +O|S)/l

≤ Fix(|l(1− η)(KX +D)|S)/l = (1− η)F(1−η)l.
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Therefore

lim Fix(|l!(KX +D + C)|S)/l! ≤ (1− η)F.

By (3.39), if P is a prime divisor on S that is not contained in the
Supp(F ), then for l sufficiently divisible, P is not contained in Bs(l(KX+
D + C)). It follows that we may pick 0 < l ∈ Z sufficiently divisible
such that

Fix(|l(KX +D + C)|S)/l ≤ λF.

Let f : Y → X be a log resolution of (X, |l(KX+D+C)|+Supp(D+C))
and write

KY + Γ = f ∗(KX +D + C) + E

where Γ = ΓY (X,D + C) and E = EY (X,D + C). We have that

Fix(l(KY + Γ))/l = Fix(lf ∗(KX +D + C))/l + E.

If Ξ = Γ− Γ ∧ Fix(l(KY + Γ))/l, then

l(KY + Ξ) ∈ Div(Y ) and Fix(l(KY + Ξ)) ∧ Ξ = 0.

Since Mov((KY +Ξ)) is free and Fix(l(KY +Ξ))+Ξ has simple normal
crossings support, it follows that SBs(KY + Ξ) contains no centers
of NKLT(Y, pΞq). Let H ∈ Div(Y ) be an ample divisor and pick
0 < m, l, q ∈ Z such that l divides m and Q = qH is sufficiently ample.
We let T = (f−1)∗S, ΓT = (Γ − T )|T and ΞT = (Ξ − T )|T . For any
section

τ ∈ H0(OT (m(KT + ΞT ))) = H0(J||m(KT+ΞT )||(m(KT + ΞT ))),

and any section σ ∈ H0(OT (Q)), we have that

σ · τ ∈ H0(J||m(KT+ΞT )||(m(KT + ΞT ) +Q)).

By (4.1), σ · τ is in the image of

H0(OY (m(KY + Ξ) +Q))→ H0(OT (m(KT + ΞT ) +Q)).

Therefore, we have that

|m(KT + ΞT )|+m(ΓT − ΞT ) + |Q|T | ⊂ |m(KY + Γ) +Q|T .
Notice that if g = f |T , then g∗ΓT = Ω + C|S. Since g∗ΞT ≤ Ω, we
have that (S, g∗ΞT ) is canonical and it follows that |m(KS + g∗ΞT )| =
g∗|m(KT + ΞT )|. Pushing forward the above inclusion via f , one sees
that

|m(KS + g∗ΞT )|+m(Ω +C|S − g∗ΞT ) +P |S ⊂ |m(KX +D+C) +P |S
where P = f∗Q. For any prime divisor R on S we have

multR Fix(|l(KX +D + C)|S) = multR′ Fix(|l(KY + Γ)|T )
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where R′ = (g−1)∗R. Therefore

g∗ΞT −C|S = Ω−Ω∧Fix(|l(KX +D+C)|S)/l ≥ Ω−Ω∧λF ≥ Ω−Φ,

and so

|m(KS + Ω− Φ)|+mΦ + (mC + P )|S ⊂ |m(KX +D) +mC + P |S.

The result now follows from (3.46). �

4.1. Deformation invariance of plurigenera. Let f : X → Z be a
smooth projective morphism from a smooth variety to an affine smmoth
curve. Y.-T. Siu has shown that the plurigenera

Pm(Xz) = h0(Xz,OXz(mKXz))

are deformation invariant (do not depend on z ∈ Z). We will now give
a proof of this beautiful result for the case of fibers of general type.

Theorem 4.3. Let A be a sufficiently ample divisor on X. If κ(KXz) ≥
0 for general z ∈ Z, then h0(Xz,OXz(mKXz + A|Xz)) does not depend
on z ∈ Z.

Proof. The function h0(Xz,OXz(mKXz +A|Xz)) is upper semicontinu-
ous (cf. [5, III.12.8]). Fix z0 ∈ Z, we must show that h0(Xz,OXz(mKXz+
A|Xz)) = h0(Xz0 ,OXz(mKXz+A|Xz0 )) this is equivalent to proving that
f∗OX(mKX +A) is locally free (on a neighborhood of z0 ∈ Z) or equiv-
alently that

f∗OX(mKX+A)→ H0(Xz,OXz(mKXz+A|Xz)) = f∗OXz(mKXz+A|Xz)

is surjective (cf. [5, III.12.9]). Since Z is affine, this is equivalent to
showing that H0(X,OX(mKX + A)→ H0(Xz,OXz(mKXz + A|Xz)) is
surjective.

We now apply (4.1) with S = Xz0 , B = 0, k = 1. We must check
that the stable base locus of KX + S does not contain S. Note that
S ∼ 0 and hence it suffices to show that H0(X, (lKX)) 6= 0 for some
l > 0. Since Z is affine, it is easy to see that this is equivalent to
showing that f∗(lKX) 6= 0 i.e. that h0(Xz,OXz(lKXz)) 6= 0 for general
z ∈ Z. But this is clear from the assumption that κ(KXz) ≥ 0. �

Theorem 4.4. If Xz is of general type for general z ∈ Z, then h0(Xz,OXz(mKXz))
does not depend on z ∈ Z for any m ≥ 0.

Proof. The proof follows from (4.2), however we will give an elemen-
tary proof (using the techniques introduced above). We may assume
that m ≥ 2 (the case m = 0 is trivial and m = 1 is well known
and follows from Hodge Theory: h0(Xz,CXz) is constant and given by
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∑n
i=0 h

i(Xz,Ω
n−i
Xz

) where n = dimXz. Since each hi(Xz,Ω
n−i
Xz

) is upper
semicontinuous, it must in fact be constant.)

Fix σ ∈ H0(Xz,OXz(mKXz)) with zero divisor Σ. We must show
that σ extends to X.

By (4.3), there is an ample line bundle A such that H0(X,OX(lKX+
A) → H0(Xz,OXz(lKXz + A|Xz)) is surjective for all l > 0. For any
l = km, pick Dl ∈ |lKX +A| so that Dl|Xz = kΣ +A|Xz . Since Xz is of
general type and Z is affine, it follows that KX is of general type and
hence we may write KX ∼Q E + εA where ε > 0, and E ≥ 0. Define
Θ = m−1−δ

km
Dkm + δεE for 0 < δ � 1, then

(m− 1)KX − (Xz + Θ) ∼Q (δε− m− 1− δ
km

)A

is ample (for k � 0) and so by (3.43), H0(Xz,OXz(mKXz)⊗J (Xz,Θ|Xz))
is contained in the image of the restriction map

H0(X,OX(mKX))→ H0(Xz,OXz(mKXz)).

Thus it suffices to check that σ ∈ H0(Xz,OXz(mKXz)⊗ J (Xz,Θ|Xz))
i.e. that σ vanishes along (the scheme defined by) J (Xz,Θ|Xz)). Since

Θ|Xz − Σ ≤ m− 1− δ
km

A|Xz + δεE|Xz

and (Xz,
m−1−δ
km

A|Xz + δεE|Xz) is klt, the claim follows from (3) of
(3.42). �

Exercise 4.5. Show that if Xz is of general type and Z is affine, then
X is of general type.

5. Pl-flips

In this section we will prove the existence of pl-flips.

5.1. pl-flips and the restricted algebra.

Definition 5.1. Let (X,D) be a purely log terminal pair and f : X →
Z be a projective morphism of normal varieties, then f is a pl-flipping
contraction if

(1) X is Q-factorial,
(2) D ∈ DivQ(X),
(3) f is small (i.e. dim Ex(f) ≤ dimX − 2) and ρ(X/Z) = 1,
(4) −(KX +D) is f -ample, and
(5) S = xDy is irreducible and −S is f -ample.
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The flip of a pl-flipping contraction if it exists is defined by

f+ : X+ = ProjZR→ Z where R =
⊕
m∈N

f∗OX(m(KX +D)).

Remark 5.2. Note the following:

(1) The flip exists if and only if it exists locally over Z. We may
therefore assume that Z = SpecA.

(2) Assuming that Z = SpecA then the flip exists if and only if

R(KX +D) =
⊕
m∈N

H0(OX(m(KX +D)))

is a finitely generated A-algebra.
(3) It immediately follows that f+ : X+ → Z is also a small bi-

rational morphism with ρ(X+/Z) = 1, X+ is Q-factorial and
KX+ +D+ is f+-ample where D+ = φ∗D and φ = (f+)−1 ◦ f :
X 99K X+. φ restricts to an isomorphism over Z − f(Ex(f)).

(4) It is easy to see that if in the above definition D ∈ DivR(X)
instead of D ∈ DivQ(X), then one can choose D′ ∈ DivQ(X)
sufficiently close to D such that f : X → Z is a pl-flipping
contraction with respect to (X,D). Similarly if xDy = S1 +
. . . + Sr with r > 1, then there exists S = Si such that −S is
f -ample. Replacing D by D− ε(xDy− S) we may assume that
xDy is irreducible.

Shokurov noticed that in order to prove the existence of flips, it
suffices to prove the existence of pl-flips.

Definition 5.3. If f : X → Z is a pl-flipping contraction and Z is
affine, then we define the restricted algebra

RS(KX +D) = Im(R(X,KX +D)→ R(S,KS + Ω))

where Ω ∈ DivQ(S) is defined by (KX + D)|S = KS + Ω. Its m-th
graded piece corresponds to the image of the homomorphism

H0(OX(m(KX +D)))→ H0(OS(m(KS + Ω))).

In order to prove that R(X,KX +D) is finitely generated, Shokurov
observed that it suffices to show that the restricted algebra RS(KX+D)
is finitely generated. We start by recalling the following well known
result.

Lemma 5.4. Let R be a graded algebra which is an integral domain
and let 0 < d ∈ Z. Then R is a finitely generated algebra if and only if
the algebra

R(d) =
⊕
m∈N

Rmd
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is a finitely generated algebra.

Proof. If R is finitely generated, then finite generation of R(d) follows
since R(d) is the ring of invariants of R with respect to the obvious Zd
action on R and since by a theorem of E. Noether, the ring of invariants
of a finitely generated ring under the action of a finite group is finitely
generated.

Assume now that R(d) is finitely generated. Notice that if f ∈ Ri,
then f is a root of the monic polynomial xd−fd ∈ R(d)[x] and hence R
is integral over R(d). Finite generation of R now follows by E. Noether’s
theorem on the finiteness of integral closures. �

Proposition 5.5. If S is a normal prime divisor and B ∈ WDiv(X)
is integral Weil and Q-Cartier and its support does not contain S, then

(1) If R(X,B) is finitely generated, then so is

RS(X,B) := Im(φ : R(X,B)→ R(S,B|S)).

(2) If S ∼ B and RS(X,B) is finitely generated then so is R(X,B).

Proof. (1) is clear. Assume now that RS(X,B) is finitely generated
and S ∼ B so that S − B = (g1) for some rational function g1 on X.
We may identify R(X,B)m with the set of rational functions g on X
such that (g) + mB ≥ 0. Now if g ∈ ker(φ), then (g) + mB = S + S ′

where S ′ ≥ 0. Then

(g/g1) + (m− 1)B = S ′

so that g/g1 ∈ R(X,B)m−1. In other words the kernel of φ is generated
by g1 and the result follows. �

Theorem 5.6. Let f : X → Z be a pl-flipping contraction with respect
to (X,D) and 0 < k ∈ Z such that k(KX + D) ∈ Div(X). If Z =
Spec(A), then the flip f+ : X+ → Z exists if and only if the restricted
algebra RS(KX +D) is finitely generated.

Proof. By (5.2), the flip f+ : X+ → Z exists if and only if R(KX +D)
is finitely generated. Since there are positive integers a and b such
that a(KX + D) ∼ bS (cf. (6.11)), by (5.4), R(X,KX + D) is finitely
generated if and only if R(X,S) is finitely generated. Let S ′ ∼ S be a
divisor in WDiv(X) whose support does not contain S (this exists as
X → Z is small and Z is affine). By (5.5) R(X,S ′) is finitely generated
if and only if RS(X,S ′) is finitely generated. By (5.4), RS(X,S ′) is
finitely generated if and only if RS(k(KX+D)) is finitely generated. �
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5.2. Zariski decomposition and pl-flips. In order to prove the ex-
istence of pl-flips in dimension n, we will need to assume that we have
constructed log terminal models in dimension n− 1. Recall the follow-
ing.

Definition 5.7. Let (X,D) be a log canonical pair, Z be an affine
variety and f : X 99K Y be a birational map over Z that extracts no
divisor, then f : X 99K Y is a log terminal model of (X,D) if

(1) f : X 99K Y extracts no divisor (i.e. f−1 contracts no divisors),
(2) Y is Q-factorial,
(3) (Y, f∗D) is divisorially log terminal,
(4) for any prime divisor E on X contracted by f , we have aE(X,D) <

aE(Y, f∗D), and
(5) KY + f∗D is nef over Z.

Remark 5.8. If f consists of a sequence of flips and divisorial con-
tractions, then (1) and (4) follow. If moreover, X is Q-factorial and
(X,D) is divisorially log terminal, then (2) and (3) also follow.

Theorem 5.9. Let π : X −→ Z be a projective morphism to a normal
affine variety, (X,D = A + B) be a kawamata log terminal pair of
dimension n, where A ≥ 0 is an ample Q-divisor and B ≥ 0. Then

(1) The pair (X,D) has a log terminal model µ : X 99K Y . In
particular if KX +D is Q-Cartier then the log canonical ring

R(X,KX +D) =
⊕
m∈N

H0(X,OX(xm(KX +D)y)),

is finitely generated.
(2) Let V ⊂ DivR(X) be the vector space spanned by the components

of D. Then there is a constant δ > 0 such that if G is a prime
divisor contained in the stable base locus of KX +D and Ξ ∈ V
such that ‖Ξ −D‖ < δ, then G is contained in the stable base
locus of KX + Ξ.

(3) Let W ⊂ V be the smallest rational affine space containing D.
Then there is a constant η > 0 and a positive integer r > 0
such that if Ξ ∈ W is any divisor and k is any positive integer
such that ‖Ξ−D‖ < η and k(KX + Ξ)/r is Cartier, then every
component of Fix(k(KX +Ξ)) is a component of the diminished
stable base locus of KX +D.

In this section we will prove

Theorem 5.10. (5.9)n−1 implies that pl-flips exist in dimension n.

We begin by proving the following:
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Theorem 5.11. Assume (5.9) in dimension n − 1. Let π : X → Z
be a projective morphism to a normal affine variety. Let (X,D =
S +A+B) be a purely log terminal pair of dimension n where X and
S are smooth, D ∈ DivQ(X), xDy = S, A is a general ample divisor,
(S,Ω = (D − S)|S) is canonical and the stable base locus of KX + D
does not contain S. For any sufficiently divisible 0 < m ∈ Z, let

Fm = Fix(|m(KX +D)|S)/m

and F = limFm!.
Then Θ = Ω− Ω ∧ F is rational. In particular if kD ∈ Div(X) and

kΘ ∈ Div(S), then

|k(KS + Θ)|+ k(Ω−Θ) = |k(KX +D)|S,
and

RS(X, k(KX +D)) ∼= R(S, k(KS + Θ)).

Proof. Suppose that Θ 6∈ DivQ(S). Let V ⊂ DivR(S) be the vector
space spanned by the components of Θ. There is a constant δ > 0 such
that if Φ ∈ V and ||Φ−Θ|| < δ, then

(1) Φ ≥ 0,
(2) Supp(Φ) = Supp(Θ) and
(3) any prime divisor contained in the stable base locus of KS + Θ

is also contained in the stable base locus of KS + Φ.

Notice that if l(KX + ∆) is Cartier and Θl = Ω− Ω ∧ Fl, then

|l(KX + ∆)|S ⊂ |l(KS + Θl)|+ l(Ω ∧ Fl).
It follows that Fix(l(KS + Θl)) does not contain any component of Θl.
Therefore

SBs(KS + Θl) ∧ Supp(Θl) = 0.

But for any δ > 0 we may choose l > 0 sufficiently divisible so that
Θl ∈ V and ||Θl −Θ|| < δ. Therefore

SBs(KS + Θ) ∧ Supp(Θ) = 0.

We now consider W ⊂ V the smallest rational affine vector space
containing Θ. By assumption dimW > 0. By (3) of (5.9), there are
a positive integer r > 0 and a constant 0 < η ∈ R such that for any
Φ ∈ W with kΦ/r ∈ Div(S) and ||Φ−Θ|| < η then

Fix(k(KS + Φ)) ⊂ SBs(KS + Θ).

We now pick 0 < ε ∈ Q such that ε(KX + D) + A is ample. By
Diophantine approximation, we may find a positive integer k, Φ ∈
DivQ(S) and a component G of Supp(Θ) (whose coefficient in Θ is
irrational) such that
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(1) 0 ≤ Φ ∈ W ,
(2) kΦ/r ∈ Div(S) and kD/r ∈ Div(X),
(3) ||Φ − Θ|| < min{δ, η, fε/k} where f is the smallest non-zero

coefficient of F , and
(4) multG Φ > multG Θ.

One sees that since ||Φ−Θ|| < fε/k, then we have

Ω ∧ λF ≤ Ω− Φ ≤ Ω

where λ = 1− ε/k. By (2) and (4.2) we have that

|k(KS + Φ)|+ k(Ω− Φ) ⊂ |k(KX + ∆)|S.

But by (4) G is a component of Fix(k(KS+Φ)). Since ||Φ−Θ|| < η, (2)
implies that G is a component of SBs(KS +Θ). This is a contradiction.
It follows that Θ is rational. The remaining assertions follow from
(4.2). �

We are now ready to prove the main theorem of this section which
easily implies (5.10).

Theorem 5.12. Assume that (5.9) holds in dimension n− 1.
Let f : X −→ Z be a projective morphism to a normal affine variety

Z. Suppose that (X,D = S + A + B) is a purely log terminal pair of
dimension n, S = xDy is irreducible and not contained in the stable
base locus of KX + D, A ≥ 0 is a general ample Q-divisor and B ≥ 0
is a Q-divisor.

Then there is a birational morphism g : T −→ S, a positive integer l
and a kawamata log terminal pair (T,Θ) such that

RS(X, l(KX +D)) ∼= R(T, l(KT + Θ)).

Proof. Let µ : Y −→ X be a log resolution of (X,D) then we may write

KY + ΓY (X,D) = µ∗(KX +D) + EY (X,D).

If T is the strict transform of S then we may choose µ so that (T,Ψ =
(ΓY (X,D) − T )|T ) is terminal. Note that T is not contained in the
stable base locus of KY + ΓY (X,D) as S is not contained in the stable
base locus of KX +D.

Pick a Q-divisor F such that µ∗A−F is ample and (Y,ΓY (X,D)+F )
is purely log terminal. Pick m > 1 so that m(µ∗A− F ) is very ample
and pick mC ∈ |m(µ∗A− F )| very general. Then

(Y,Γ′ = ΓY (X,D)− µ∗A+ F + C ∼Q ΓY (X,D)),

is purely log terminal and (T,Ψ = (Γ′ − T )|T ) is terminal.
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On the other hand

R(X, k(KX +D)) ∼= R(Y, k(KY + ΓY (X,D))) and

RS(X, k(KX +D)) ∼= RT (Y, k(KY + Γ′)),

for any k sufficiently divisible. Now apply (4.2) to (Y,Γ′). �

Proof of (5.10). We may assume that Z is affine and by (5.6), it suffices
to prove that the restricted algebra is finitely generated. As Z is affine,
S is mobile and as f is birational, the divisor D − S is big. But then

D − S ∼Q A+B,

where A is a general ample Q-divisor and B ≥ 0. As S is mobile, we
may assume that the support of B does not contain S. Now

KX +D′ = KX + S + (1− ε)(D − S) + εA+ εB ∼Q KX +D,

is purely log terminal, where ε is any sufficiently small positive rational
number. By (5.4), we may replace D by D′. We may therefore assume
that D = S+A+B, where A is a general ample Q-divisor and B ≥ 0.
Since we are assuming (5.9) in dimension n− 1, (5.12) implies that the
restricted algebra is finitely generated. �

6. The cone theorem

The following results (toghether with the existance and termination
of flips) constitute the heart of the minimal model program. These
results are due to the contribuitions of many mathematicians in the
80’s. In particular to Kawamata, Reid and Shokurov.

Theorem 6.1 (Non-vanishing Theorem). Let X be a projective variety,
D a nef Cartier divisor and ∆ a Q-divisor such that (X,∆) is sub
kawamata log terminal (i.e. ∆ is possibly not effective). Suppose that
aD −KX −∆ is Q-Cartier, nef and big for some a > 0.

Then, for all m� 0, we have H0(X,OX(mD − x∆y)) 6= 0.

Theorem 6.2 (Basepoint-free Theorem). Let (X,∆) be a projective
kawamata log terminal pair and D be a nef Cartier divisor such that
aD−KX−∆ is nef and big for some a > 0. Then |bD| is basepoint-free
for all b� 0.

Theorem 6.3 (Rationality Theorem). Let (X,∆) be a projective kawa-
mata log terminal pair such that KX +∆ is not nef. Let a = a(X,∆) >
0 be an integer such that a(KX + ∆) is Cartier. Let H be a nef and
big Cartier divisor, and define

r = r(H) = max{t ∈ R : H + t(KX + ∆) is nef}.
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Then r is a rational number and it may be written as r = u/v where
u, v are integers and

0 < v < a(dimX + 1).

Theorem 6.4 (Cone Theorem). Let (X,∆) be a projective kawamata
log terminal pair. Then

(1) There are countably many rational curves Cj ⊂ X such that
0 < −(KX + ∆) · Cj ≤ 2 dimX, and

NE(X) = NE(X)(KX+∆)≥0 +
∑

R≥0[Cj].

(2) For any ε > 0, there are only finitely many rays

[Cj] ∈ NE(X)(KX+∆+εH)<0.

(3) If F ⊂ NE(X) is a (KX +∆) negative extremal face, then there
is a unique morphism contF : X → Z such that (contF )∗OX =
OZ (in particular Z is normal, contF is surjective with con-
nected fibers) and an irreducible curve C ⊂ X is contracted to
a point if and only if [C] ∈ F .

(4) let L be a line bundle on X such that L · C = 0 for all curves
with [C] ∈ F . Then there is a line bundle LZ on Z such that
(contF )∗LZ = L.

Proof. (We closely follow the proof in [10, §3.3].) If KX+∆ is nef, (1) is
clear and there is nothing to prove. If not, we must begin by choosing
the countable collection of rays Ri (eventually we would like to show
that Ri = R≥0[Ci] for some rational curve Ci). We consider nef divisor
classes L which are not ample so that FL = L⊥ ∩ NE 6= {0} (there
are countably many of these). We claim that if FL 6⊂ NEKX+∆≥0 then
there is a nef divisor L′ such that

FL ⊃ FL′ , dimFL′ = 1, and FL′ ⊂ NEKX+∆<0.

To see this, pick H an ample line bundle, a = a(KX + ∆) such that
a(KX + ∆) is Cartier, α = (a(d+ 1))! and let

rL(n,H) := max{t ∈ R : nL+H + t(KX + ∆) is nef}.
By (6.3) we have αrL(n,H) ∈ N and rL(n,H) is a non-decreasing
function of n as L is nef. If ξ ∈ FL \NE(KX+∆)≥0

, then

rL(n,H) ≤ H · ξ
−(KX + ∆) · ξ

.

Thus rL(n,H) is bounded and hence rL(n,H) = rL(H) for n� 0. So

D = D(nL,H) := α(nL+H + rL(H)(KX + ∆))
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is a nef non-ample divisor (for n� 0) and

0 6= FD ⊂ FL, and FD ⊂ NEKX+∆<0 ∪ {0}.
To see the first inclusion, let ξ ∈ FD, then D · ξ = 0 and (D−L) · ξ ≥ 0
(as D− L is nef for n� 0). But then −L · ξ = (D− L) · ξ −D · ξ ≥ 0
so that L · ξ = 0 as L is nef. The second inclusion follows since by the
first inclusion then we have C ·D = C · (H + αrL(H)(KX + ∆)) = 0.

We must now show that by varyingH we may assume that if dimFL >
1, then dimFD < dimFL. Let V ⊂ N1(X) be the subspace spanned
by FL, then we must show that

(nL+H + αrL(H)(KX + ∆))|V = (H + αrL(H)(KX + ∆))|V 6= 0.

If this were not the case, then the image of H via the projection
N1(X) → V is always contained in the linear subspace spanned by
the image of KX + ∆. But since N1(X) is generated by classes of
ample divisors, it follows that dimFL = 1 as required. Repeating the
above argument we end up with an L′ such that dimL′ = 1.

We must now show that

NE = NE(KX+∆)≥0
+

∑
dimFL=1

FL.

The inclusion ⊃ is clear. Suppose that the reverse inclusion does not
hold, then there is a divisor M intersecting the interior of the left hand
side and such that the right hand side is contained in M<0. Let H be
an ample divisor and

t = max{s > 0|H + sM}
is ample, then t ∈ Q (cf. (6.3)) and there is an element Z ∈ NE \ {0}
such that (H+tM)·Z = 0 and Z ·(KX+∆) < 0. By what we have seen
above, we can find a nef but not ample divisor L with FL ⊂ FH+tM

and dimFL = 1. By the definition of H + tM it is clear that FL is
contained in M>0 and this is the required contradiction.

We now check that the one dimensional rays FL only accumulate
in a neighborhood of (KX + ∆)⊥, we proceed as follows. Let KX +
∆, H1, . . . , Hd give a basis of N1(X) defined over Z, where the Hi are
ample divisors. Let U ⊂ Pd = P(N1(X)) be the halfspace defined by
(KX + ∆)<0 and consider the coordinate system defined by

ξ ∈ U → φ(ξ) = (
ξ ·H1

ξ · (KX + ∆)
, . . . ,

ξ ·Hd

ξ · (KX + ∆)
).

Let NZ ⊂ N1(X) be the set of integral classes, then Λ = φ(NZ∩ (KX +
∆)<0) ⊂ Ad is contained in a lattice. Thus if ξ is an integral class
generating FL, then φ(ξ) ∈ Λ and such classes do not accumulate in
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U ; i.e. the only accumulation points of FL are near the hyperplane at
infinity (KX + ∆)⊥. But it is then clear that there are only finitely
many FL which are KX + ∆ + εH negative.

We next check that if F is a KX + ∆ negative extremal face, then
F = FD = D⊥∩NE 6= {0} for some Cartier divisor D. We let < F >⊂
N1(X) be the linear subspace spanned by F and V =< F >⊥⊂ N1(X).
F is spanned by the extremal rays that it contains and each extremal
ray is defined over Q so that V is defined over Q. We may pick ε > 0
such that F ⊂ (KX + ∆ + εH)<0. Note that as F is extremal, we have
< F > ∩NE(X) = F and so

WF := NE(X)(KX+∆+εH)≥0
+

∑
dimFL=1, FL 6⊂F

FL

is a closed cone with

NE(X) = WF + F, and WF∩ < F >= {0}.
Thus there is a hyperplane H containing F and not intersecting WF \
{0}. Equivalently H ∈ V and H>0 ⊃ WF \ {0}. We may then find a
rational hyperplane H ′ ∈ V such that H ′>0 ⊃ WF \ {0} and thus H ′ is
a Q-Cartier divisor with FH′ = F .

To see (3) and (4), let F ⊂ NE(X) be a KX + ∆ negative extremal
face F = FD for some Q-Cartier divisor D. For any m � 0, the ]Q-
Cartier divisor mD − (KX + ∆) is strictly positive on NE(X) − {0}.
Thus mD− (KX + ∆) is ample and mD is nef and by (6.2) mD is base
point free (for any m� 0). Let gF = gF,m : X → Z = Zm be the Stein
factorization of X → |mD| so that Zm is normal and gF ∗OX = OZ .
Let MZ,m be the pull back of the hyperplane bundle to Zm so that
mD = g∗F,mMZ,m. It is easy to see that a curve C is contracted by
gF if and only if C · D = 0, thus gF,m = gF : X → Z is independent
of m � 0 (as it is determined by the curves it contracts). Hence
D = (m+ 1)D−mD ∼ g∗FMZ,m+1− g∗FMZ,m. Similarly if L ·C = 0 for
all [C] ∈ F , then L+mD also supports F for m� 0 and so it defines
gF : X → Z. By what we have seen above L + mD ∼ g∗FNZ for some
Cartier divisor NZ on Z, so that L = g∗F (NZ −MZ,m).

�

Corollary 6.5. If F is a negative extremal ray, inducing a morphism
gF : X → Z, then there is a short exact sequence

0→ Pic(Z)→ Pic(Z)→ Z
where the first map is defined by L → g∗FL and the second one by
M → M · C where C is any (fixed) contracted curve. In particular
ρ(X) = ρ(Z) + 1.
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Proof. Exercise (cf. [10, §3]). �

Corollary 6.6. If X is Q-factorial, F is a negative extremal ray, and
gF : X → Z is of divisorial or Fano type, then Z is Q-factorial.

Proof. Suppose that gF is divisorial (i.e. that the codimension of the
exceptional locus is 1), and let E be an exceptional divisor such that
E · C 6= 0 for some exceptional curve C.Note that F = R[C] For any
divisor B on Z, pick s = −(g−1

F )∗B · C/E · C so that

((g−1
F )∗B + sE) · C = 0.

Pick m ∈ N so that m(g−1
F )∗B + sE) is Cartier. By (6.4), we have

m(g−1
F )∗B + sE) ∼ g∗FMZ for some Cartier divisor MZ on Z. Since

mB = gF ∗(m(g−1
F )∗B + sE)) ∼MZ

it follows that B is Q-Cartier.
Suppose that gF is Fano (i.e. that dimX > dimZ. Let B be a divisor

on Z and let G be the closure of the pull back of B0 the restriction of
B to the smooth locus of Z (note that B0 is a Cartier divisor on the
smooth locus of Z and hence it’s pull-back makes sense). Let C ⊂ Xz

be a curve on a general fiber Xz so that F = R[C]. Clearly G · C = 0.
Pick m ∈ N so that mG is Cartier. By (6.4), we have mG ∼ g∗FMZ for
some Cartier divisor MZ on Z. Since mB = gF ∗mG ∼ MZ , it follows
that B is Q-Cartier. �

Proof of the Non-vanishing Theorem. This proof is based on an argu-
ment of Shokurov cf. [10, §3.5]

Step 0. We may assume that X is smooth, projective, (X,∆) is sub
kawamata log terminal and aD −KX −∆ is ample for some a > 0.

To see this, consider f : X ′ → X a birational map from a smooth
projective variety. We write

KX′ + ∆′ = f ∗(KX + ∆)

so that (X ′,∆′) is sub kawamata log terminal (∆′ is possibly not effec-
tive), and af ∗D − KX′ − ∆′ = f ∗(aD − KX − ∆) is nef and big. So
we may choose an effective divisor F ∈ DivQ(X ′) and an ample divisor
A ∈ DivQ(X ′) such that f ∗(aD −KX −∆) ∼Q A + F . It follows that
for any rational number 0 < ε� 1, we have that

f ∗(aD −KX −∆)− εF ∼Q (1− ε)f ∗(aD −KX −∆) + εA

is ample. We then have that af ∗D − KX′ − ∆′ − εF is ample and
(X ′,∆′ + εF ) is sub-kawamata log terminal. Let ∆′′ := ∆′ + εF , then
f∗∆

′′ ≥ ∆ and one sees that

h0(X ′,OX(mf ∗D + p−∆′′q)) ≤ h0(X,OX(mD + p−∆q)).
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Step 1. We may assume that D is not numerically equivalent to 0.
If in fact D ≡ 0 (i.e. D is numerically trivial), for any a, t ∈ Z we have
that

kD + p−∆q ≡ KX + {∆}+ tD − (KX + ∆).

Since for t ≥ a, tD − (KX + ∆) is ample, by Kawamata Viehweg
vanishing we compute

h0(X,OX(mD + p−∆q)) = χ(X,OX(mD + p−∆q)) =

χ(X,OX(p−∆q)) = h0(X,OX(p−∆q)) 6= 0.

Step 2. For any point x ∈ (X/ Supp(∆)) there exists an integer q0

such that for all integers q ≥ q0, there is a Q-divisor

M(q) ≡ (qD −KX −∆)

with multxM(q) > 2 dimX.
To see this, let d = dimX. D is nef so that De · Ad−e ≥ 0 for any

ample divisor A, and so

(qD−KX−∆)d = ((q−a)D+aD−KX−∆)d ≥ d(q−a)D·(aD−KX−∆)d−1.

Since D 6≡ 0, there is a curve C ⊂ X such that D · C > 0 and since D
is big, there is an integer p � 0 such that (p(aD −KX −∆))d−1 may
be represented by an effective cycle containing C. Therefore, D · (aD+
G−KX)d−1 > 0. Therefore, the right hand side in the above equation
goes to ∞ as q goes to ∞. So, by Serre-Vanishing and Riemann-Roch,
we have

h0(OX(e(qD −KX −∆))) ≥ ed

d!
(2d)d +O(ed−1).

Vanishing along x with multiplicity > 2de imposes at most

(2de)d

d!
+O(ed−1)

conditions. So we can find a divisor

M(q, e) ∈ |e(qD −KX −∆)| with multxM(q, e) > 2de.

We set M(q) = M(q, e)/e.
Step 3. We pick a log resolution f : Y → X which dominates

Blx(X). We set

(1) KY ≡ f ∗(KX + ∆) +
∑
bjFj, where bj > −1,

(2) (1/2)f ∗(aD−KX −∆)−
∑
pjFj is ample for some 0 < pj � 1,

(3) f ∗M(q) =
∑
rjFj with F0 corresponding to the strict transform

of the exceptional divisor of Blx(X)→ X.
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Step 4. We define

N(b, c) := bf ∗D +
∑

(−crj + bj − pj)Fj −KY .

We would like to arrange that N(b, c) is ample. To this end we write

N(b, c) = bf ∗D +
∑

(−crj + bj − pj)Fj −KY

≡ bf ∗D − cf ∗(qD −KX −∆)−
∑

pjFj − f ∗(KX + ∆)

= (b− a− c(q − a))f ∗D + (1− c)f ∗(aD −KX −∆)−
∑

pjFj

= (b−a−c(q−a))f ∗D+(
1

2
−c)f ∗(aD−KX−∆)+[

1

2
f ∗(aD−KX−∆)−

∑
pjFj].

The first term is nef if b − a − c(q − a) ≥ 0, the second term is nef if
c ≤ 1/2 and the remaining terms give an ample divisor. Thus, if these
conditions are satisfied by b and c, then N(b, c) is ample.

Step 5. We set

c = min{(1 + bj − pj)/rj|rj > 0}.
Then c > 0 and we may assume that the pj have been chosen so that
the above minimum is achieved for exactly one value j′ of j. We let
F = Fj′ . Now x /∈ Supp ∆ and so b0 = d − 1 and r0 > 2d so that
c < (1 + (d − 1) − p0)/2d < 1/2. Therefore, c < 1/2 and so N(b, c) is
ample for any b ≥ a+ c(q − a).

Step 6. We write

N(b, c) = bf ∗D + A− F −KY

and f ∗∆ = −
∑
gjFj. For any non-exceptional component Fj we have

bj = gj. The coefficient of Fj in A is (−crj + bj − pj) < bj and so

pAq ≤ f ∗p−∆q+ E

where E is f -exceptional and so

H0(Y,OY (bf ∗D+pAq)) ⊂ H0(Y,OY (bf ∗D+f ∗p−∆q)) = H0(X,OX(bD+p−∆q)).

Now N(b, c) is ample so that

H1(Y,OY (bf ∗D + pAq− F )) = H1(Y,OY (bf ∗D + pA− Fq)) = 0.

Therefore since H0(F,OF ((bf ∗D + pAq)|F )) 6= 0 (by induction on the
dimension!), then H0(X,OX(bD + p−∆q)) 6= 0 as required

�

Proof of the Base Point Free Theorem. See [10, §3.2]. �

To prove the Rationality Theorem, we will need the following.
57



Lemma 6.7. Let 0 6= P (x, y) ∈ Z[x, y] with degP (x, y) ≤ n. Assume
that there is a real number r ∈ R, an integer a and a real number
ε > 0 such that P (x, y) = 0 for all sufficiently large integers x, y with
0 < ay − rx < ε.

Then r ∈ Q and if r = p/q with (p, q) = 1, then q ≤ a(n+ 1)/ε.

Proof. (See [10, 3.19]) Suppose r 6∈ Q, then there is a pair of sufficiently
big integers (x̄, ȳ) with 0 < aȳ − rx̄ < ε/(n+ 2). Therefore

(x̄, ȳ), (2x̄, 2ȳ), . . . , ((n+ 1)x̄, (n+ 1)ȳ)

are solutions of P (x, y). It follows that ȳx − x̄y divides P (x, y). We
may repeat this argument, choosing smaller ε so that we get a new pair
of sufficiently big integers (x̄, ȳ). It follows that P (x, y) is divisible by
infinitely many linear polynomials. This is the required contradiction.

Therefore r = p/q ∈ Q and we may assume (p, q) = 1. For any j > 0,
there are integers (xj, yj) such that ayj − rxj = aj/q. We have that
a(yj + kp)− r(xj + akp) = aj/p for any k ∈ Z. Therefore if aj/p < ε,
one sees (as above) that (ay − rx)− aj/p divides P (x, y). Since there
are at most n such values, we have that a(n+ 1)/p ≥ ε. �

Lemma 6.8. Let X be a smooth projective variety, Di ∈ Div(X), A ∈
DivQ(X) such that Supp(A) has simple normal crossings and pAq ≥ 0.
If
∑
uiDi is nef and

∑
uiDi +A−KX is ample for some ui ∈ Z, then

P (x1, . . . , xk) = χ(
∑

xiDi + pAq) 6= 0.

Proof. For any integer m� 0,
∑
muiDi + A−KY is ample so that

χ(
∑

muiDi + pAq) = H0(OX(
∑

muiDi + pAq)).

The Lemma now follows from (6.1). �

Proof of the Rationality Theorem. We follow [10, §3.4].
Step 1. We may assume that H is base point free.
Assume that a(KX + ∆) is Cartier, then by (6.2),

H ′ := m(cH + da(KX + ∆))

is base point free for any m� c� d > 0.
Note that

H +
t′ +mda

mc
(KX + ∆) =

1

mc
(H ′ + t′(KX + ∆)).

Therefore r(H) ∈ Q if and only if r(H ′) ∈ Q. Note that if r(H ′) divides
q, then r(H) has denominator dividing mcv, but as m� c� 0, r(H)
has denominator dividing v.
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Step 2. Fix ε > 0. For any sufficiently large integers (p, q) with
0 < aq − rp < ε let

L(p, q) = Bs|pH + qa(KX + ∆)|.
(Here, L(p, q) = X if |pH + qa(KX + ∆)| = ∅.) Then L(p, q) is inde-
pendent of (p, q) and non-empty. We let L0 denote this set.

To see this, note that if p′, q′ � p, q, then we may write (p′, q′) =
(kp + kq) + (p′′ + q′′) where p′′H + q′′a(KX + ∆) is ample. Therefore
L(p′, q′) ⊂ L(p, q) and by Noetherian induction, the sets L(p, q) are
independent of (p, q). Since pH + qa(KX + ∆) is not nef, it is not base
point free and so L0 6= ∅.

Step 3. Pick a log resolution f : Y → X, let D1 = f ∗H, D2 =
f ∗(a(KX + ∆)) and write

KY = f ∗(KX + ∆) + A.

We have that pAq ≥ 0 is exceptional. Therefore

H0(Y,OY (pD1 + qD2 + pAq)) = H0(X,OX(pH + qa(KX + ∆))).

Define
P (x, y) = χ(xD1 + yD2 + pAq).

Since D1 is nef and big, P (x, y) 6= 0.
Step 4. If r 6∈ Q, then L0 6= X.
For any 0 < ay − rx < 1, we have that

xD1 + yD2 + A−KY ≡ f ∗(xH + (ay − 1)(KX + ∆))

is nef and big. Therefore, by (2.38)

H i(Y,OY (xD1 + yD2 + pAq)) = 0 ∀ i > 0.

By (6.7) there are sufficiently large integers p, q such that 0 < aq−rp <
1 and

P (p, q) = h0(Y,OY (pD1 + qD2 + pAq)) > 0.

Therefore |pH + qa(KX + ∆)| 6= ∅.
Step 5. Let I ⊂ Z × Z such that 0 < ay − rx < 1 and Bs(xH +

ya(KX+∆)) = L0. For any (p, q) ∈ I let f : Y → X be a log resolution
and write:

(1) KY = f ∗(KX+∆)+
∑
ajFj where aj > 1 as (X,∆) is kawamata

log terminal,
(2) f ∗(pH + (qa − 1)(KX + ∆)) −

∑
pjFj is ample for some 0 <

pj � 1 (this may be achieved as pH + (qa− 1)(KX + ∆) is nef
and big), and

(3) f ∗|pH + qa(KX + ∆)| = |L| +
∑
rjFj where rj ≥ 0,

∑
rjFj =

Fix f ∗|pH + qa(KX + ∆)| and |L| is base point free.
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We may choose c > 0 and 0 < pj � 1 so that∑
(−crj + aj − pj)Fj = A′ − F

where pA′q ≥ 0 and A′∧F = 0. Notice that f(F ) ⊂ Bs(pH+qa(KX +
∆)).

Step 6. If p′, q′ � 0 and 0 < aq′ − rp′ < aq − rp, then the divisor

N(p′, q′) = f ∗(p′H + q′a(KX + ∆)) + A′ − F −KY

is ample.
We have

N(p′, q′) ≡ f ∗(p′ − (1 + c)p)H + q′ − (1 + c)q)a(KX + ∆))+

f ∗((1 + c)pH + (1 + c)qa(KX + ∆)) +
∑

(−crj + aj − pj)Fj −KY

≡ cL+ f ∗(p′ − (1 + c)p)H + q′ − (1 + c)q)a(KX + ∆))

+f ∗(pH + (qa− 1)(KX + ∆))−
∑

pjFj.

But L is base point free and hence nef, (p′ − (1 + c)p)H + (q′ − (1 +
c)q)a(KX + ∆) is nef (as (q′ − (1 + c)q)a < r(p′ − (1 + c)p)) and
f ∗(pH + (qa− 1)(KX + ∆))−

∑
pjFj is ample.

Step 7. F is not a component of

Bs|f ∗(p′H + q′a(KX + ∆)) + pA′q|.
By Step 6, the homomorphism

H0(Y,OY (f ∗(p′H + q′a(KX + ∆)) + pA′q))→

H0(F,OF (f ∗(p′H + q′a(KX + ∆)) + pA′q))

is surjective. By (6.8), the polynomial

χ(F,OF (f ∗(p′H + q′a(KX + ∆)) + pA′q))

is not identically zero and for 0 < aq′ − rp′ < aq − rp, we have that

(f ∗(p′H + q′a(KX + ∆)) + pA′q)|F −KF = N(q′, p′)|F
is ample so that

χ(F,OF (f ∗(p′H+q′a(KX+∆))+pA′q)) = h0(F,OF (f ∗(p′H+q′a(KX+∆))+pA′q)).

By (6.7) (with ε = aq−rp), there are p′, q′ � 0 such that 0 < aq′−rp′ <
aq − rp and

h0(F,OF (f ∗(p′H + q′a(KX + ∆)) + pA′q)) 6= 0.

The claim now follows.
It follows that f(F ) is not contained in L0. This is a contradiction

and so r ∈ Q.
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Step 8. We must now show that if r = u/v where u, v are coprime
integers, then 0 < v < a(dimX + 1). See [10, §3.4].

�

6.1. Generalizations. In what follows we will also need straightfor-
ward generalizations of the above results to the relative case with real
divisors.

Theorem 6.9 (Basepoint-free Theorem). Let (X,∆) be a Q-factorial
kawamata log terminal pair a π : X → U a projective morphism (dom-
inant with connected fibers) to a normal variety and D be a π-nef R-
Cartier divisor such that aD − KX − ∆ is π-nef and π-big for some
a > 0.

Then D is semiample over U (i.e. there is a morphism f : X → Z
over U and a divisor H ∈ DivR(Z) ample over U such that D = f ∗H.

Proof. As the property that D is semiample over U is local, we may
assume that U is affine. This case is (7.1) of [4] (for example). �

Corollary 6.10. Let (X,∆) be a Q-factorial kawamata log terminal
pair, where ∆ is an R-divisor. Let f : X −→ U be a projective mor-
phism of normal quasi-projective varieties such that KX +∆ is nef over
U and ∆ is big over U .

Then KX + ∆ is semiample over U .

Proof. We may assume that U is affine.
By (8.6) we may find KX + ∆′ = KX + A + B ∼R KX + ∆, where

A ≥ 0 is a general ample Q-divisor and B ≥ 0. As

(KX + ∆)− (KX +B) ∼R,U A,

is ample and KX + B is kawamata log terminal, (6.2) implies that
KX + ∆ is semiample. �

Exercise 6.11. Use (6.2) to show that if f : X −→ U is a projective
morphism of normal quasi-projective varieties such that KX + ∆ is
dlt and −(KX + ∆) is ample over U , then if B,C ∈ DivQ(X) are
numerically equivalent, they are Q-linearly equivalent. (Hint. Reduce
to the klt case and let D = B − C.)

7. The minimal model program

7.1. Types of models.

Definition 7.1. Let φ : X 99K Y be a birational map that extracts
no divisors (i.e. φ−1 contracts no divisors), D ∈ DivR(X) such that
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D′ = φ∗D ∈ DivR(Y ). Then φ is D-non-positive (resp. D-negative)
if for some common resolution p : W → X and q : W → Y , we have

p∗D = q∗D′ + E

where E ≥ 0 is effective and q-exceptional (respectively E ≥ 0 is q-
exceptional and its support contains all φ-exceptional divisors).

Lemma 7.2. Let φ : X 99K Y be a birational map that extracts no
divisors (i.e. φ−1 contracts no divisors), D ∈ DivR(X) such that D′ =
φ∗D ∈ DivR(Y ) is nef.

Then φ is D-non-positive (resp. D-negative) if for some common
resolution p : W → X and q : W → Y , we have

p∗D = q∗D′ + E

where p∗E ≥ 0 (respectively p∗E ≥ 0 and its support contains all φ-
exceptional divisors).

If D = KX +∆ and D′ = KY +φ∗∆ then this condition is equivalent
to

aF (X,∆) ≤ aF (Y, φ∗∆) (resp. aF (X,∆) < aF (Y, φ∗∆))

for all φ-exceptional divisors F ⊂ X.

Proof. By (2.7). �

Definition 7.3. Let π : X → U be a projective morphism of normal
quasi-projective varieties. If KX + ∆ is log canonical and φ : X 99K Y
is a birational map over U that extracts no divisors, then we say that

(1) Y is a weak log canonical model for KX+∆ over U (WLCM(X,∆/U))
is φ if KX + ∆-non-positive and KY + Φ∗∆ is nef over U .

(2) Y is a log canonical model for KX+∆ over U (LCM(X,∆/U))
if φ is KX + ∆-non-positive and KY + Φ∗∆ is ample over U .

(3) Y is a log terminal model for KX+∆ over U (LTM(X,∆/U))
is φ if KX + ∆-negative and KY + Φ∗∆ is divisorially log ter-
minal nef over U and Y is Q-factorial.

If ψ : X 99K Z is a rational map over U , then Z is an ample model
for KX + ∆ over U if there is a log terminal model φ : X 99K Y for
KX + ∆ over U , a morphism f : Y → Z over U and a ample divisor
H ∈ DivR(Z) such that KY + Φ∗∆ = f ∗H.

Lemma 7.4. Let π : X → U be a projective morphism of normal quasi-
projective varieties. If KX + ∆ ≡U KX + ∆′ are log canonical (resp.
divisorially log terminal) and φ : X 99K Y is a birational map over
U that extracts no divisors, Y is normal and Q-factorial, then Y is a
weak log canonical model (resp. a log terminal model) for KX + ∆ over
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U if and only if it is a weak log canonical model (resp. a log terminal
model) for KX + ∆′ over U .

Proof. Let p : W → X and q : W → Y be a common resolution and
write

p∗(KX+∆) = q∗(KY +φ∗∆)+E and p∗(KX+∆′) = q∗(KY +φ∗∆
′)+E ′.

Since E − E ′ ≡Y 0 is q-exceptional, by (2.7), we have E = E ′ and the
lemma follows. �

7.2. The minimal model program (traditional). Recall the fol-
lowing.

Definition 7.5. Let π : X → U be a projective morphism of normal
quasi-projective varieties, (X,∆) a log canonical pair and f : X → Z
be a morphism of normal varieties (surjective with connected fibers)
over U . Then f is a flipping contraction over U if f is a small
(i.e. dim Ex(f) < dimX − 1) birational morphism of relative Picard
number ρ(X/Z) = 1, X is Q-factorial and −(KX +∆) is f -ample. The
flip f+ : X+ → Z (if it exists) is given by X+ = LCM(X,∆/Z). In
particular f+ is a small birational morphism of relative Picard number
ρ(X+/Z) = 1, X+ is Q-factorial cf. (7.7) and (KX+ +∆+) is f+-ample
where ∆+ = ((f+)−1 ◦ f)∗∆.

Lemma 7.6. Let (X,∆) be a log canonical pair, f : X → Z be a
flipping contraction and f+ : X+ → Z its flip. Then

aE(X,∆) ≤ aE(X+,∆+)

for any divisor E over X and aE(X,∆) < aE(X+,∆+) if the center of
E is contained in the flipping or flipped locus. In particular (X+,∆+)
is log canonical.

Proof. Let p : W → X and q : W → X+ be a common log resolution
and write

p∗(KX + ∆) = q∗(KX+ + ∆+) + F.

Since KX + ∆ is nef over Z (and hence is nef over X+) and since F
is q-exceptional, then by (2.7), F ≥ 0. Suppose that E has center V
contained in the flipping locus. If E is not contained in the support of
F , then by (2.7), Wv ∩ F = ∅ where v ∈ V is a general point and Wv

is the fiber over v. Let C be a curve in Wv such that either p∗C 6= 0 or
q∗C 6= 0. Then as C ·F = 0, we have p∗C ·(KX+∆) = q∗C ·(KX+ +∆+)
which is impossible. �

Lemma 7.7. Let (X,∆) be a dlt Q-factorial pair, f : X → Z be a
flipping contraction and f+ : X+ → Z its flip. Then X+ is Q-factorial
and KZ + f∗∆ 6∈ DivR(Z).
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Proof. Replacing δ by (1 − ε)∆ for 0 < ε � 1, we may assume that
(X,∆) is klt. Let D+ ∈ WDiv(X+) and D ∈ WDiv(X) be its strict
transform. As X is Q-factorial, D ∈ DivQ(X). Pick a divisor H =
h(KX +∆) ∈ DivQ(X) such that (D+H) ·C = 0 for any f -exceptional
curve Then D + H = f ∗G for some G ∈ DivQ(Z) cf. (6.4). We have
that D+ + φ∗H = (f+)∗G and φ∗H = h(KX+ + ∆+) ∈ DivQ(X+).

Suppose now thatKZ+f∗∆ ∈ DivR(Z), thenKX+∆ = f ∗(KZ+f∗∆)
contradicting the fact that −(KX + ∆) is f -ample. �

Definition 7.8. Let π : X → U be a projective morphism of normal
quasi-projective varieties, (X,∆) a Q-factorial log canonical pair and
f : X → Z be a morphism of normal varieties (surjective with con-
nected fibers) over U . Then f is a divisorial contraction over U
if f is a birational morphism of relative Picard number ρ(X/Z) = 1,
dim Ex(f) = dimX − 1 and −(KX + ∆) is f -ample.

Lemma 7.9. Let (X,∆) be a dlt (resp. klt) Q-factorial pair, f : X →
Z be a divisorial contraction, then Z is Q-factorial and aEx(f)(X,∆) <
aEx(f)(Z, f∗∆). In particular (Z, f∗∆) is dlt (resp. klt). In particular
(Z, f∗∆) is log canonical.

Proof. Let E = Ex(f), then E · C 6= 0 were R = R≥0[C] is the con-
tracted negative extremal ray. Let D ∈WDiv(Z) and D′ ∈WDiv(X)
be its strict transform. As X is Q-factorial, D′ ∈ DivQ(X). Pick
h 6= 0 such that (D + hE) · C = 0 for any f -exceptional curve. Then
D + hE = f ∗G for some G ∈ DivQ(Z) cf. (6.4). But then D = G and
we are done.

We may now writeKX+∆ = f ∗(KZ+f∗∆)+aE. By (2.7), a > 0. �

Definition 7.10. Let π : X → U be a projective morphism of normal
quasi-projective varieties, (X,∆) a log canonical pair and f : X → Z
be a morphism of normal varieties (surjective with connected fibers)
over U . Then f is a Mori fiber space if ρ(X/Z) = 1 and −(KX +∆)
is ample over Z.

Let π : X → U be a projective morphism of normal quasi-projective
varieties. Assume that (X,∆) is a divisorially log terminal Q-factorial
pair. We would like to find a finite sequence of well understood geo-
metric operations (flips and divisorial contractions) whose output is a
log terminal model for KX + ∆ over U or a Mori fiber space.

Step 1. If KX + ∆ is nef over U stop (this is a minimal model over
U). Otherwise, pick a KX + ∆ negative extremal ray R and consider
the corresponding contraction morphism f = contR : X → Z over U .

Note that ρ(X/Z) = 1 and −(KX + ∆) is ample over Z.
Step 2. If dimX > dimZ stop (this is a Mori fiber space).
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If dimX = dimZ and dim Ex(f) = dimX − 1, we say that f is
a divisorial contraction. In this case Z is Q-factorial, (Z, f∗∆) is
divisorially log terminal cf. (7.9). Replace (X,∆) by (Z, f∗∆) and go
back to Step 1.

If dimX = dimZ and dim Ex(f) > dimX − 1, we have a small
contraction. In this case Z is not Q-factorial (cf. (??)) so we may
not replace (X,∆) by (Z, f∗∆). Instead we replace (X,∆) by the flip
(X+,∆+) of f : X → Z and go back to Step 1.

Step 3. For this procedure to be succesful, we must show that flips
exist and that it terminates after finitely many steps. Notice that if
f : X → Z is divisorial, then ρ(Z) = ρ(X) − 1 and if X 99K X+

is a flip, then ρ(X) = ρ(X+). Since ρ(X) is a positive integer, there
are finitely many divisorial contractions. We must therefore show that
there are no infinite sequences of flips.

Conjecture 7.11. Let (X,∆) be a log canonical pair.

(1) If f : X → Z is a flipping contraction, then the flip of f exists.
(2) There are no infinite sequences of flips φi : Xi 99K Xi+1 for

(Xi,∆i) where ∆i+1 = (φi)∗∆i and (X,∆) = (X0,∆0) is log
canonical.

Remark 7.12. We will show that kawamata log terminal flips exist in
all dimensions. Termination of flips is known in dimension 3 and there
are partial results in dimension 4. We will show that sequences of flips
for the minimal model program with scaling terminate when (X,∆) is
kawamata log terminal and ∆ is big.

Remark 7.13. If dim(X) = 2, then there are no flips. Starting from
a smooth surface X (and ∆ = 0), one proceeds by contracting the
extremal rays corresponding to −1 curves i.e. rational curves C ∼=
P1
C with C2 = KP1

C
· C = −1. Each time, one obtains a morphism

Xi → Xi+1 were Xi+1 is a smooth surface and ρ(Xi+1) = ρ(Xi) − 1
is a positive integer. After contracting finitely many −1 curve, we
therefore obtain a minimal surface i.e. a surface Xmin birational to
X that contains no −1 curves. We then have that either KXmin is nef
(this happens when κ(X) ≥ 0) or that there is a negative extremal ray
R. Contracting this ray we obtain a Mori fiber space Xmin → Z and
so X is covered by rational curves. If dimZ = 0, then Xmin = P2

C, and
if dimZ = 1 then Xmin → Z is a ruled surface.

7.3. The minimal model with scaling. In this version of the mini-
mal model program, we start with a Q-factorial kawamata log terminal
pairs (X,∆) and (X,∆ + C) where KX + ∆ + C is nef and ∆ is big.
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We pick
λ = sup{t|KX + ∆ + tC is nef}.

If λ = 0, then KX + ∆ is nef and we stop.
Assume λ > 0. Since ∆ is big, there is a KX + ∆ negative extremal

ray R = R≥0[Σ] such that (KX + ∆ + λC) · Σ = 0 cf. (6.4). Let
f : X → Z be the corresponding contraction.

If dimZ < dimX we have a Mori fiber space and we stop.
Otherwise, we replace (X,∆) by the corresponding flip or divisorial

contraction. Notice that f is KX +∆+λC-trivial so that KX +∆+λC
is nef even after peforming the flip or divisorial contraction. We may
therefore repeat the above procedure.

In this way we obtain a sequence of weak log canonical models for
(X,∆ + tC) for t ∈ [0, 1].

If we can show that there are only finitely many such models, then
we can show that the minimal model program with scaling terminates.

7.4. Minimal models for varieties of general type.

Theorem 7.14. Let (X,∆) be a projective Q-factorial kawamata log
terminal pair.

If ∆ is big then any minimal model program with scaling for KX +∆
terminates. That is, if KX + ∆ is pseudo-effective then KX + ∆ has a
log terminal model and if KX + ∆ is not pseudo-effective then KX + ∆
has a Mori fiber space.

We have the following immediate consequence.

Corollary 7.15. Let (X,∆) be a projective kawamata log terminal
pair.

If KX + ∆ is big, then KX + ∆ has a log terminal model and a log
canonical model.

Proof. Since KX + ∆ is big, there is an effective divisor D ∈ DivR(X)
such that KX + ∆ ∼R D ≥ 0. Let 0 < ε � 1, then KX + ∆ + D ∼R
(1 + ε)(KX + ∆) is kawamata log terminal and ∆ +D is big. It follows
that KX + ∆ +D has a log terminal model which is also a log terminal
model for KX + ∆. Since ∆ + D is big, by (6.2), KX + ∆ + D is
semiample so that there is a projective morphism g : X → Z such
that KX + ∆ + D = g∗A and A ∈ DivR(Z) is ample. It follows that
g : X → Z is the log canonical model of KX + ∆. �

Remark 7.16. The above results also hold in the relative case.

Corollary 7.17. Let f : X → Z be a flipping contraction, then the
flip of f exists.
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Corollary 7.18. Let (X,∆) be a klt pair and E be a set of exceptional
divisors over X such that if E ∈ E, then aE(X,∆) ≤ 0. Then there
exists a birational morphism ν : X ′ → X such that X is Q-factorial
and Ex(ν) = E. If E = ∅, then ν is small and we say that X ′ → X is a
Q-factorialization of (X,∆) and if E contains all exceptional divisors
such that aE(X,∆) ≤ 0, then KX′ + ∆′ = ν∗(KX + ∆) is terminal and
we say that X ′ → X is a terminalization of (X,∆).

Proof. Let f : Y → X be a log resolution of (X,∆) and write KY +Γ =
f ∗(KX + ∆) + E where Γ = Γ(X,∆) and E = E(X,∆). Let F be the
reduced divisor consisting of all exceptional divisors not contained in E
and 0 < ε� 1. Then (Y,Γ+εF ) is klt and so there is φ : Y 99K X ′ a log
terminal model for (Y,Γ + εF ) over X. In particular X ′ is Q-factorial.
Then KX′ +φ∗(Γ + εF ) is nef over X and hence so is φ∗(E+ εF ) (since
KX′+φ∗(Γ−E) ≡X 0). By the negativity lemma E+εF ≤ 0 and hence
E + εF = 0 so that the divisors in E are contracted by Y 99K X ′. It
is also easy to see that if P is a prime divisor contracted by Y 99K X ′,
then

aP (Y,Γ−E) = aP (X,∆) = aP (X ′, φ∗(Γ−E)) = aP (X ′, φ∗(Γ+εF )) > aP (Y,Γ+εF )

and hence that P is contained in Supp(E + F ) = E . �

7.5. The main induction. We begin with the following.

Definition 7.19. Let π : X −→ U be a projective morphism of nor-
mal quasi-projective varieties, and let V be a finite dimensional affine
subspace of the real vector space of Weil divisors on X. Define

L = {∆ ∈ V |KX + ∆ is log canonical },
Nπ = {∆ ∈ L |KX + ∆ is nef over U }.

Moreover, fixing an R-divisor A ≥ 0, define

VA = {∆ |∆ = A+B,B ∈ V },
LA = {∆ = A+B ∈ VA |KX + ∆ is log canonical and B ≥ 0 },
EA,π = {∆ ∈ LA |KX + ∆ is pseudo-effective over U },
NA,π = {∆ ∈ LA |KX + ∆ is nef over U }.

Given a birational map φ : X 99K Y over U , whose inverse does not
contract any divisors, define

WY,π = {∆ ∈ EA,π | (Y,Γ = φ∗∆) is a weak log canonical model for (X,∆) over U },
and given a rational map ψ : X 99K Z over U , define

AZ = {∆ ∈ EA,π |Z is an ample model for (X,∆) over U }, .
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Almost invariably, the support of A will have no components in
commnon with V . In this case the condition that B ≥ 0 is vacu-
ous. In nearly all applications, A will be an ample Q-divisor over U .
In this case, we often assume that A is general in the sense that we
fix a positive integer such that kA is very ample, and we assume that
A = 1

k
A′, where A′ ∈ |kA| is very general. With this choice of A, we

have

NA,π ⊂ EA,π ⊂ LA = L+ A ⊂ VA = V + A,

and the condition that the support of A has no common components
with any element of V is then automatic.

The proof of (7.14) is by induction on the dimension. We brake it
down in to several statements of independent interest.

Theorem 7.20 (Existence of pl-flips). Let f : X −→ Z be a pl-flipping
contraction for an n-dimensional purely log terminal pair (X,∆).

Then the flip f+ : X+ −→ Z of f exists.

Theorem 7.21 (Existence of log terminal models). Let π : X −→ U
be a projective morphism of normal quasi-projective varieties, where
X has dimension n. Suppose that KX + ∆ is kawamata log terminal,
where ∆ is big over U .

If there exists an R-divisor D such that KX + ∆ ∼R,U D ≥ 0, then
KX + ∆ has a log terminal model over U .

Theorem 7.22 (Finiteness of models (big case)). Let π : X −→ U be a
projective morphism of normal quasi-projective varieties, where X has
dimension n. Fix A, a general ample Q-divisor over U . Suppose that
KX + ∆0 is kawamata log terminal, for some ∆0.

Let C ⊂ LA be a rational polytope such that KX + ∆ is π-big, for
every ∆ ∈ C.

Then the set of isomorphism classes

{Y |Y is a log terminal model over U of a pair (X,∆), where ∆ ∈ C },
is finite.

Theorem 7.23 (Non-vanishing theorem). Let π : X −→ U be a pro-
jective morphism of normal quasi-projective varieties, where X has di-
mension n. Suppose that KX + ∆ is kawamata log terminal, where ∆
is big over U .

If KX + ∆ is π-pseudo-effective, then there exists an R-divisor D
such that KX + ∆ ∼R,U D ≥ 0.

Theorem 7.24 (Finiteness of models). Let π : X −→ U be a projective
morphism of normal quasi-projective varieties, where X has dimension
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n. Fix A, a general ample Q-divisor over U . Suppose that KX + ∆0 is
kawamata log terminal, for some ∆0.

Then the set of isomorphism classes

{Y |Y is the weak log canonical model over U of a pair (X,∆), where ∆ ∈ LA },

is finite.

Theorem 7.25 (Effective Zariski decomposition). Let π : X −→ Z be
a projective morphism to a normal affine variety. Let (X,∆ = A+B)
be a kawamata log terminal pair of dimension n, where A ≥ 0 is an
ample Q-divisor and B ≥ 0. If KX + ∆ is pseudo-effective, then

(1) The pair (X,∆) has a log terminal model µ : X 99K Y . In
particular if KX + ∆ is Q-Cartier then the log canonical ring

R(X,KX + ∆) =
⊕
m∈N

H0(X,OX(xm(KX + ∆)y)),

is finitely generated.
(2) Let V ⊂ DivR(X) be the vector space spanned by the components

of ∆. Then there is a constant δ > 0 such that if G is a prime
divisor contained in the stable base locus of KX + ∆ and Ξ ∈ V
such that ‖Ξ −∆‖ < δ, then G is contained in the stable base
locus of KX + Ξ.

(3) Let W ⊂ V be the smallest rational affine space containing ∆.
Then there is a constant η > 0 and a positive integer r > 0
such that if Ξ ∈ W is any divisor and k is any positive integer
such that ‖Ξ−∆‖ < η and k(KX + Ξ)/r is Cartier, then every
component of Fix(k(KX + Ξ)) is a component of the stable base
locus of KX + ∆.

The proof of Theorem 7.20, Theorem 7.21, Theorem 7.22, Theo-
rem 7.23, Theorem 7.24 and Theorem 5.9 proceeds by induction:

• Theorem 5.9n−1 implies Theorem 7.20n, see (5.12).
• Theorem 7.21n−1, Theorem 7.24n−1 and Theorem 7.20n imply

Theorem 7.21n, cf. (9.4).
• Theorem 7.21n implies Theorem 7.22n, cf. (10.4).
• Theorem 7.23n−1, Theorem 7.24n−1, Theorem 7.21n and Theo-

rem 7.22n imply Theorem 7.23n, cf. (11.4).
• Theorem 7.21n and Theorem 7.23n imply Theorem 7.24n, cf.

(10.4).
• Theorem 7.21n, Theorem 7.23n and Theorem 7.24n imply The-

orem 5.9n, cf. (??).
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8. Special termination with scaling

In this section we show that we have special termination of the MMP
with scaling.

Lemma 8.1. Assume Theorem 5.12n and Theorem 7.24n.
Let πi : Xi −→ U be a sequence of projective morphisms of normal

quasi-projective varieties, where Xi and Xj are isomorphic in codimen-
sion one. Suppose that there exist R-divisors ∆i such that KXi + ∆i

is R-Cartier and nef over U . Suppose that there are fixed R-divisors
A1 ≥ 0 and B1 ≥ 0 on X = X1, with transforms Ai and Bi on Xi,
such that

Ai ≤ ∆i ≤ Bi,

where A1 is big over U and KX1 +B1 is kawamata log terminal. Let n
be the dimension of X.

Then the set of isomorphism classes of birational maps

{X 99K Xi | i ∈ N },
is finite.

Here, two birational maps φ : X 99K Xi and ψ : X 99K Xj are isomor-
phic if there exists an isomorphism η : Xi −→ Xj such that ψ = η ◦ φ.

Proof. As we are assuming Theorem 5.12n, replacing X by a log ter-
minal model we may assume that X is Q-factorial (cf. (7.18).

Let ∆′i be the strict transform of ∆i on X. By (8.6) we may assume
that A1 is an ample Q-divisor over U and B1 is an effective Q-divisor.
As (Xi,∆i) is a weak log canonical model of (X,∆′i), the result follows
as we are assuming Theorem 7.24n. �

Lemma 8.2. Assume Theorem 5.12n−1 and Theorem 7.24n−1.
Let π : X −→ U be a projective morphism of normal quasi-projective

varieties, where X is a Q-factorial variety of dimension n. Suppose
that

KX + ∆ + C = KX + S + A+B + C,

is divisorially log terminal and nef over U , where S = x∆y, B+(A/U)
does not contain any log canonical centres of (X,∆+C) and B, C ≥ 0.

Then every (KX + ∆)-MMP over U with scaling of C is eventually
disjoint from S.

Proof. Suppose not. Let Xi 99K Xi+1 be an infinite sequence of flips
and divisorial contractions over U , starting with X1 := X, for the
(KX + ∆)-MMP with scaling of C, which meets S infinitely often. We
may write A ∼R,U A

′+B′ where A′ is ample over U and the support of
B′ contains no log canonical centre of (X,∆ +C). Replacing A by εA′
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and B by B+(1−ε)A+εB′ where 0 < ε� 1, we may therefore assume
that A is ample over U . Let T be a component of S that intersects the
flipping locus infinitely many times. Pick a rational number ε > 0 such
that A′ = A+ ε(S−T ) is ample over U . Replacing A′ by an R-linearly
equivalent over U divisor, we may assume that

KX + S − ε(S − T ) + A′ +B ∼R,U KX + S + A+B,

is purely log terminal. Note that every step of the (KX + S +A+B)-
MMP over U is a step of the (KX +S− ε(S−T ) +A′+B)-MMP over
U , and xS − ε(S − T ) + A′ + By = T . Thus, replacing KX + ∆ by
KX + S − ε(S − T ) +A′ +B we may assume that S is irreducible and
KX + ∆ is purely log terminal. Let Si be the strict transform of S in
Xi and let Si 99K Si+1 be the induced birational map.

Since there are at most finitely many divisorial contractions, we may
assume that there is an integer k > 0 such that for any i ≥ k the
rational map Xi 99K Xi+1 is a flip.

By (4.2.14) of [3], we may also assume that for any i ≥ k, the rational
map Si 99K Si+1 does not extract any divisors. By (1.6) of [1], we may
therefore assume that for any i ≥ k, the rational map Si 99K Si+1 is
an isomorphism at the generic point of every divisor on Si and Si+1.
In particular we may assume that Si 99K Si+1 is an isomorphism in
codimension one.

Let ∆i and Ci be the strict transforms of ∆ and C on Xi. Since Si is
the unique log canonical centre of (Xi,∆i), Si is normal. By adjunction
we may write

(KXi + ∆i)|Si = KSi + Θi.

Then, for any i ≥ k, Θi is the strict transform of Θk. By definition of
the MMP with scaling there is a ti ≥ 0 such that KXi + ∆i + tiCi is
nef and log canonical. It follows that KSi + Θi + tiCi|Si is also nef and
log canonical. Let t∞ = lim ti, then Xi 99K Xi+1 is KXk + ∆k + t∞Ck
non positive for all i ≥ 0. Proceeding as above, one sees that

KX + ∆ + t∞C ∼R,U KX + S + A′ +B′

where KX +S+A′+B′ is purely log terminal and A′ is ample over U .
By (8.8), we have that

KXk + ∆k + t∞Ck ∼R,U KXk + Sk + A′′ +B′′,

where KXk +Sk +A′′+B′′ is purely log terminal and A′′ is ample over
U . In particular

KSk + Θk + t∞Ck|Sk ∼R,U (KXk +Sk +A′′+B′′)|Sk = KSk +A′′|Sk + Ξk,

where KSk +A′′|Sk + Ξk is kawamata log terminal. It then follows that
KSk +A′′|Sk + Ξk + (ti− t∞)Ck is kawamata log terminal for any i� 0.
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Thus the hypotheses of (8.1) are satisfied, and the set of isomorphism
classes

{S 99K Si | i ∈ N },
is finite, so that the set of pairs

{ (Si,Θi) | i ∈ N },

is also finite.
On the other hand, let Xi −→ Zi be the flipping contraction and

let Ti be the normalisation of the image of Si in Zi, so that there
are birational morphisms pi : Si −→ Ti and qi : Si+1 −→ Ti. Note
that −(KSi + Θi) is pi-ample whilst (KSi+1

+ Θi+1) is qi-ample. By
assumption infinitely often the flipping locus intersects Si. If pi is an
isomorphism and the flipping locus intersects Si, then Si · Σi > 0,
where Σi is a flipping curve. But then Si+1 must intersect any flipped
curve negatively, so that all flipped curves lie in Si+1 and qi is not
an isomorphism. In particular infinitely often one of the birational
morphisms pi or qi is not an isomorphism.

Thus we may assume that pk or qk is not an isomorphism, where the
isomorphism class of Sk is repeated infinitely often. Pick any valuation
ν whose centre is contained in the locus where Sk 99K Sk+1 is not an
isomorphism. By (2.28) of [9]

a(ν, Sk,Θk) < a(ν, Sk+1,Θk+1) and a(ν, Si,Θi) ≤ a(ν, Si+1,Θi+1),

for all i ≥ k + 1, a contradiction. �

We use (8.2) to run a special MMP:

Lemma 8.3. Assume Theorem 5.12n−1, Theorem 7.24n−1 and Theo-
rem 7.20n.

Let π : X −→ U be a projective morphism of normal quasi-projective
varieties, where X is Q-factorial of dimension n. Suppose that (X,∆+
C = S + A + B + C) is a divisorially log terminal pair, such that
x∆ + Cy = S, B+(A/U) does not contain any log canonical centres of
(X,∆ + C), and B ≥ 0, C ≥ 0. Suppose that there is an R-divisor
D ≥ 0 whose support is contained in S and a real number α ≥ 0, such
that

(∗) KX + ∆ ∼R,U D + αC.

If KX+∆+C is nef over U then there is a log terminal model φ : X 99K
Y for KX + ∆ over U , where B+(φ∗A/U) does not contain any log
canonical centres of (Y,Γ = φ∗∆).
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Proof. By (8.7) and (8.9) we may run the (KX +∆)-MMP with scaling
of C over U , and this will preserve the condition that B+(A/U) does
not contain any log canonical centre of (X,∆). Pick t ∈ [0, 1] minimal
such that KX + ∆ + tC is nef over U . If t = 0 we are done. Otherwise
we may find a (KX + ∆)-negative extremal ray R over U , such that
(KX + ∆ + tC) ·R = 0. Let f : X −→ Z be the associated contraction
over U . As t > 0, C ·R > 0 and so D ·R < 0. In particular f is always
birational.

If f is divisorial, then we can replace X, S, A, B, C and D by their
images in Z. Note that (∗) continues to hold.

Otherwise f is small. As D · R < 0, R is spanned by a curve Σ
which is contained in a component T of S, where T ·Σ < 0. Note that
KX + S + A + B − ε(S − T ) is purely log terminal for any positive
ε� 1, and so f is a pl-flip.

As we are assuming Theorem 7.20n, the flip f ′ : X ′ −→ Z of f : X −→
Z exists. Again, if we replace X, S, A, B, C and D by their images
in X ′, then (∗) continues to hold. On the other hand this flip is cer-
tainly not an isomorphism in a neighbourhood of S and so the MMP
terminates by (8.2). �

8.1. lemmas.

Lemma 8.4. Let π : X −→ U be a projective morphism of normal
quasi-projective varieties. Let V be a finite dimensional affine linear
subspace of the space of Weil divisors on X and let A be a big Q-divisor
over U . Let C ⊂ LA(V ) be a polytope.

If B+(A/U) does not contain any log canonical centres of (X,∆),
for every ∆ ∈ C, then we may find a general ample Q-divisor A′ over
U and a translation

L : A1
R(X) −→ A1

R(X),

by a divisor Q-linearly equivalent to zero over U such that L(C) ⊂
LA′(V ′), where V ′ = L(V ).

Proof. Let ∆1,∆2, . . . ,∆l be the vertices of the polytope C, and let
Z the union of the non kawamata log terminal locus of each (X,∆i).
Then Z contains the non kawamata log terminal locus of (X,∆), for
any ∆ ∈ C.

By assumption, we may write A ∼R,U C+D, where C is an ample R-
divisor over U and D ≥ 0 does not contain any component of Z. Then
we may find rational functions f1, f2, . . . , fk, real numbers r1, r2, . . . , rk
and an R-Cartier divisor E on U such that

A = C +D +
∑

ri(fi) + π∗E.
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Replacing C by C+
∑
ri(fi)+π∗E we may assume that A ∼Q,U C+D.

Replacing C by C ′ ≤ C sufficiently close to C and D by D + (C −C ′)
we may assume that C is Q-Cartier. Replacing C by a Q-linearly
equivalent divisor over U , we may assume that C is a general ample
Q-divisor over U . Given any rational number δ > 0, let

L : A1
R(X) −→ A1

R(X) given by L(∆) = ∆ + δ(C +D − A),

be translation by the divisor δ(C +D−A) ∼Q,U 0. As C +D does not
contain Z, if δ is sufficiently small then

KX +L(∆i) = KX + ∆i + δ(C +D−A) = KX + δC + (∆i− δA+ δD),

is log canonical for every 1 ≤ i ≤ l. But then L(C) ⊂ LA′(V ′), where
A′ = δC and V ′ = L(V ). �

Lemma 8.5. Let π : X −→ U be a projective morphism of normal
quasi-projective varieties. Let V be a finite dimensional rational affine
subspace of the space of Weil divisors on X and let A be a general ample
Q-divisor over U . Let G ≥ 0 be a Q-Cartier divisor whose support does
not contain any log canonical centre of (X,∆), for any ∆ ∈ LA(V ).

If there is a kawamata log terminal pair (X,∆0) then we may find a
general ample Q-divisor A′ over U , a rational affine space V ′ and an
injective rational affine linear map

L : VA −→ V ′A′ ,

which preserves Q-linear equivalence over U such that L(LA(V )) is
contained in the interior of LA′(V ′) and there is a divisor ∆′0 ∈ LA′(V ′),
whose support contains the support of G such that KX+∆′0 is kawamata
log terminal.

Proof. Let W be the vector space spanned by the components of ∆0.
Since ∆0 ∈ L(W ) is a non-empty rational polytope, possibly replacing
∆0, we may assume that KX + ∆0 is Q-Cartier.

As LA(V ) is a rational polytope, possibly replacing V by the span
of LA(V ) we may assume that KX + ∆ is R-Cartier for ever ∆ ∈
LA(V ). By compactness, we may pick Q-divisors ∆1,∆2, . . . ,∆l such
that LA(V ) is contained in the simplex spanned by ∆1,∆2, . . . ,∆l (we
do not assume that ∆i ≥ 0). As

∆i −∆0 = (KX + ∆)− (KX + ∆0),

is Q-Cartier, we may pick a positive rational number ε > 0 such that

ε(∆i −∆0) + (1− ε)A,
is an ample Q-divisor over U , for 1 ≤ i ≤ l. Pick

A′i ∼Q,U ε(∆i −∆0) + (1− ε)A,
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general ample Q-divisors over U . Let V ′ be the space spanned by V ,
A and A′, the Q-divisors A′1, A

′
2, . . . , A

′
l and the components of ∆0 and

G. If we define L : VA −→ V ′A′ by

L(∆i) = (1− ε)∆i + A′i + ε∆0 + A′ − A,
and extend to the whole of VA by linearity then L is an injective rational
linear map, which preserves Q-linear equivalence over U . If we set

∆′0 = ∆0 + A′,

then KX + ∆′0 is kawamata log terminal and ∆′0 ∈ LA′(V ′). Note that
L is the composition of

L1 : VA −→ V ′A′ and L2 : V ′A′ −→ V ′A′ ,

given by

L1(∆i) = ∆i + A′i/(1− ε) + A′ − A and L2(∆) = (1− ε)∆ + ε∆′0.

As L1(LA(V )) ⊂ LA′(V ′), it follows that if ∆ ∈ LA(V ) then KX +
L(∆) is kawamata log terminal. Pick a Q-Cartier divisor H ≥ 0 which
contains every component of every element of V ′. Let V ′′ be the span
of V and the components of H. Let δ > 0 by any rational number and
let

T : V ′A −→ V ′′A ,

be tranlsation by δH. If δ > 0 is sufficiently small then T (L(LA(V )))
is contained in the interior of LA′(V ′) and T (∆′0) contains the support
of G. Replacing L by T ◦ L and V ′ by V ′′ we are done. �

Lemma 8.6. Let π : X −→ U be a projective morphism of normal
quasi-projective varieties. Let (X,∆ = A + B) is a log canonical pair,
where A ≥ 0 and B ≥ 0.

If B+(A/U) does not contain any log canonical centres of (X,∆)
and there is a kawamata log terminal pair (X,∆0) then we may find
a kawamata log terminal pair (X,∆′ = A′ + B′), where A′ ≥ 0 is an
ample Q-divisor, general over U , B′ ≥ 0 and KX + ∆ ∼Q,U KX + ∆′.

Proof. By (8.4) we may assume that A is a general ample Q-divisor
over U . Let V be the vector space spanned by the components of ∆.
As ∆ ∈ LA(V ) the result follows by (8.5). �

Lemma 8.7. Let π : X −→ U be a projective morphism of normal
quasi-projective varieties. Suppose the pair (X,∆ = A+B) has kawa-
mata log terminal singularities, where A is big over U , B ≥ 0, and
C is an R-Cartier divisor such that KX + ∆ is not nef over U , but
KX + ∆ + C is nef over U .

Then there is a (KX +∆)-negative extremal ray R and a real number
0 < λ ≤ 1 such that KX + ∆ + λC is nef over U but trivial on R.
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Lemma 8.8. Let π : X → U be a projective morphism of normal
varieties and φ : X 99K Y be a rational map over U of Q-factorial
varieties such that φ−1 contracts no divisors. Assume that (X,∆ =
T + A+ B) is a purely log terminal pair such that T = x∆y, A ≥ 0 is
ample over U and B ≥ 0. Assume moreover that T ′ = φ∗T 6= 0 and φ
is KX + ∆ non-positive.

Then, (Y, φ∗∆) is purely log terminal and we have that φ∗(∆) ∼R,U
T ′ +A′ +B′ where (Y, T ′ +A′ +B′) is purely log terminal, A′ ≥ 0 is a
general ample Q-divisor over U and B′ ≥ 0.

Proof. As (X,∆) is purely log terminal, φ is KX + ∆-non-positive and
xφ∗∆y = φ∗T = T ′, it follows immediately that (Y, φ∗∆) is purely log
terminal.

Let A′ ≥ 0 be a general ample Q-divisor over U such that A−φ−1
∗ A

′

is ample over U . Pick a A1 ∼Q,U A− φ−1
∗ A

′ a general ample Q-divisor
over U . As the support of φ−1

∗ A
′ does not contain T , we have that

KX + T + (1− ε)A+ ε(φ−1
∗ A

′ + A1) +B

is purely log terminal for any 0 < ε � 1. By what we have allready
proved, it follows that KY +T ′+ εA′+ (1− ε)φ∗A+φ∗(εA1 +B) is also
purely log terminal. Replacing εA′ by A′ and (1− ε)φ∗A+φ∗(εA1 +B)
by B′ the lemma follows. �

Lemma 8.9. Let π : X −→ U be a projective morphism of normal
quasi-projective varieties. Suppose that KX + ∆ is divisorially log ter-
minal, X is Q-factorial and φ : X 99K Y is a (KX+∆) flip or divisorial
contraction.

If Γ = φ∗∆ then

(1) φ is an isomorphism at the generic point of every log canonical
centre of KY +Γ. In particular (Y,Γ) is divisorially log terminal.

(2) If ∆ = S + A + B, where S = x∆y, A is big over U and
B+(A/U) does not contain any log canonical centres of KX+∆,
then φ∗S = xΓy, φ∗A is big over U and B+(φ∗A/U) does not
contain any log canonical centres of KY + Γ.

In particular Γ ∼R,U Γ′ where (Y,Γ′) is kawamata log termi-
nal and Γ′ is big.

9. Log terminal models

Definition 9.1. Let π : X −→ U be a projective morphism of normal
varieties. Let (X,∆ = A+B) be a Q-factorial divisorially log terminal
pair and let D be an R-divisor, where A ≥ 0, B ≥ 0 and D ≥ 0.
A nice model over U for (X,∆), with respect to A and D, is any
birational map f : X 99K Y over U , such that
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• f−1 does not contract any divisors,
• the only divisors contracted by f are components of D,
• Y is Q-factorial,
• KY + f∗∆ is divisorially log terminal and nef over U , and
• B+(f∗A/U) does not contain any log canonical centres of (Y,Γ =
f∗∆).

Lemma 9.2. Assume Theorem 5.12n−1, Theorem 7.24n−1 and Theo-
rem 7.20n.

Let π : X −→ U be a morphism of normal projective varieties, where
X has dimension n. Let (X,∆ = A+B) be a divisorially log terminal
log pair and let D be an R-divisor, where A ≥ 0, B ≥ 0 and D ≥ 0.

If

(i) KX + ∆ ∼R,U D ≥ 0,
(ii) (X,G) is log smooth, where G is the support of ∆ +D, and
(iii) B+(A/U) does not contain any log canonical centres of (X,G)

then (X,∆) has a nice model over U , with respect to A and D.

Proof. We may write KX + ∆ ∼R,U D1 + D2, where every component
of D1 is a component of x∆y and no component of D2 is a component
of x∆y. We proceed by induction on the number of components of D2.

If D2 = 0 then pick any divisor H such that KX + ∆ + H is divi-
sorially log terminal and ample over U (for example take for H any
sufficiently ample, general ample Q-divisor over U). As the support
of D is contained in x∆y, (8.3) implies that (X,∆) has a nice model
f : X 99K Y over U , with respect to A and D.

Now suppose that D2 6= 0. Let

λ = sup{ t ∈ [0, 1] | (X,∆ + tD2) is log canonical },

be the log canonical threshold of D2. Then λ > 0 and (X,Θ = ∆+λD2)
is divisorially log terminal and log smooth, KX + Θ ∼R,U D+λD2 and
the number of components of D+λD2 that are not components of xΘy
is smaller than the number of components of D1 + D2 that are not
components of x∆y. By induction there is a nice model f : X 99K Y
over U for (X,Θ), with respect to A and D. Since B+(f∗A/U) does
not contain any log canonical centres of (Y, f∗Θ),

KY + f∗∆ ∼R,U f∗D1 + f∗D2,

KY + f∗Θ = KY + f∗∆ + λf∗D2,

where KY + f∗Θ is divisorially log terminal and nef over U , and the
support of f∗D1 is contained in xf∗∆y, (8.3) implies that (Y, f∗∆) has
a nice model g : Y 99K Z over U , with respect to f∗A and f∗D. The
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composition g ◦ f : X 99K Z is then a nice model over U for (X,∆),
with respect to A and D. �

Lemma 9.3. Let π : X −→ U be a morphism of normal projective
varieties. Let (X,∆ = A + B) be a divisorially log terminal log pair
and let D be an R-divisor, where A ≥ 0, B ≥ 0 and D ≥ 0.

If every component of D is either semiample or a component of
B((KX + ∆)/U) and f : X 99K Y is a nice model over U for (X,∆),
with respect to A and D, then f is a log terminal model for (X,∆) over
U .

Proof. By hypothesis the only divisors contracted by f are components
of B((KX + ∆)/U). Since the question is local over U , we may assume
that U is affine. Since B+(f∗A/U) does not contain any log canonical
centres of (Y,Γ = f∗∆), we may find KY + Γ′ ∼R,U KY + Γ where
KY + Γ′ is kawamata log terminal and Γ′ is big over U . (6.10) implies
that KY + Γ is semiample.

If p : W −→ X and q : W −→ Y resolve the indeterminacy of f then
we may write

p∗(KX + ∆) + E = q∗(KY + Γ) + F,

where E ≥ 0 and F ≥ 0 have no common components, and both E
and F are exceptional for q.

As KY +Γ is semiample, B((q∗(KY +Γ)+F )/U) and F have the same
support. On the other hand, every component of E is a component of
B((p∗(KX + ∆) +E)/U). Thus E = 0 and any divisor contracted by f
is contained in the support of F . Therefore f is a log terminal model
of (X,∆). �

Lemma 9.4. Theorem 5.12n−1, Theorem 7.24n−1 and Theorem 7.20n
imply Theorem 5.12n.

Proof. Pick any ample R-Cartier divisors Hi on U such that

KX + ∆ + π∗H1 ∼R D + π∗H2 ≥ 0.

Replacing ∆ by ∆ + π∗H1 and D by D + π∗H2, we may assume that
KX + ∆ ∼R D ≥ 0. By (8.6) we may assume that ∆ = A + B,
where A is a general ample Q-divisor over U and B ≥ 0. By (9.6)
we may assume that D = M + F , where every component of F is a
component of the stable fixed divisor and if L is a component of M
then mL is mobile. Pick a log resolution f : Y −→ X of the support
of D and ∆, which resolves the base locus of each linear system |mL|,
for every component L of M . Let Γ be the divisor defined in (9.10).
By definition of Γ, every component of the exceptional locus belongs
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to B((KY + Γ)/U). Replacing Γ by an R-linearly equivalent divisor,
we may assume that Γ contains an ample divisor over U . In particular,
replacing mπ∗L by a general element of the linear system |mπ∗L|, we
may assume that KY + Γ ∼R,U N +G, where every component of N is
semiample, every component of G is a component of B((KY + Γ)/U),
and (Y,Γ +N +G) is log smooth. By (9.10), we may replace X by Y
and the result follows by (9.2) and (9.3). �

9.1. lemmas.

Lemma 9.5. Let D be an integral Weil divisor on a normal variety
X.

Then the stable base locus coincides with the usual definition of the
stable base locus.

Proof. Let
|D|Q = {C ≥ 0 |C ∼Q D }.

Let R be the intersection of the elements of |D|R and let Q be the
intersection of the elements of |D|Q. It suffices to prove that Q = R.
As |D|Q ⊂ |D|R, it is clear that R ⊂ Q.

Suppose that x /∈ R. We want to show that x /∈ Q. Replacing
X by the blow up of X at x, we may assume that there is a divisor
C which is not a component of R and it suffices to prove that C is
not a component of Q. We may find D′ ∈ |D|R such that C is not a
component of D′. But then

D = D′ +
∑

ri(fi),

where fi are rational functions on X and ri are real numbers. Let V be
the real subspace of the vector space of all Weil divisors on X spanned
by the components of D, D′ and (fi) and let W be the span of the (fi).
Then W ⊂ V are defined over the rationals. Set

P = {D′′ ∈ V |D′′ ≥ 0, multC(D′′) = 0, D′′ −D ∈ W } ⊂ |D|R.
Then P is a rational polyhedron. As D′ ∈ P , P is non-empty, and so
it must contain a rational point D′′. We may write

D′′ = D +
∑

si(fi),

where si are real numbers. Since D′′ and D have rational coefficients,
it follows that we may find si which are rational. But then D′′ ∈ |D|Q,
and so C is not a component of D′′, nor therefore of Q. �

Proposition 9.6. Let π : X −→ U be projective morphism of normal
varieties and let D ≥ 0 be an R-divisor. Then we may find R-divisors
M and F such that
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(1) M ≥ 0 and F ≥ 0,
(2) D ∼R,U M + F ,
(3) every component of F is a component of B(D/U), and
(4) if B is a component of M then some multiple of B is mobile.

We need two basic results:

Lemma 9.7. Let X be a normal variety and let D and D′ be two
R-divisors such that D ∼R D

′.
Then we may rational functions f1, f2, . . . , fk and real numbers r1, r2, . . . , rk

which are independent over the rationals such that

D = D′ +
∑
i

ri(fi).

In particular every component of (fi) is either a component of D or of
D′.

Proof. By assumption we may find f1, f2, . . . , fk and real numbers r1, r2, . . . , rk
such that

D = D′ +
k∑
i=1

ri(fi).

Pick k minimal with this property. Suppose that the real numbers ri
are not independent over Q. Then we can find rational numbers di,
not all zero, such that ∑

i

diri = 0.

Possibly re-ordering we may assume that dk 6= 0. Multiplying through
by an integer we may assume that di ∈ Z. Possibly replacing fi by
f−1
i , we may assume that di ≥ 0. Let d be the least common multiple

of the non-zero di. If di 6= 0, we replace fi by f
d/di
i (and hence ri by

diri/d) so that we may assume that either di = 0 or 1. For 1 ≤ i < k,
set

gi =

{
fi/fk if di = 1

fi if di = 0.

Then

D = D′ +
k−1∑
i=1

ri(gi),

which contradicts our choice of k.
Now suppose that B is a component of (fi). Then

multB(D) = multB(D′) +
∑

rjnj,
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where nj = multB(fj) is an integer and ni 6= 0. But then one of
multB(D)−multB(D′) 6= 0, so that one of multB(D) and multB(D′) 6= 0
must be non zero. �

Lemma 9.8. Let π : X −→ U be a projective morphism of normal
varieties and let 0 ≤ D′ ∼R,U D ≥ 0 be two R-divisors on a normal
variety X with no common components.

Then we may find D′′ ∈ |D/U |R such that a multiple of every com-
ponent of D′′ is mobile.

Proof. Pick ample R-divisors on U , H and H ′ such that D + π∗H ∼R
D′+ π∗H ′ and D+ π∗H and D′+ π∗H ′ have no common components.
Replacing D by D + π∗H and D′ by D′ + π∗H ′, we may assume that
D′ ∼R D.

We may write

D′ = D +
∑

ri(fi) = D +R,

where ri ∈ R and fi are rational functions on X. By (9.7) we may
assume that every component of R is a component of D +D′.

We proceed by induction on the number of components of D + D′.
If q1, q2, . . . , qk are any positive rational numbers then we may always
write

C ′ = C +Q = C +
∑

qi(fi),

where C ≥ 0 and C ′ ≥ 0 have no common components. But now if
we suppose that qi is sufficiently close to ri then C is supported on D
and C ′ is supported on D′. We have that mC ∼ mC ′ for some integer
m > 0. By Bertini we may find C ′′ ∼Q C such that every component
of C ′′ has a multiple which is mobile. Pick λ > 0 maximal such that
D1 = D − λC ≥ 0 and D′1 = D′ − λC ′ ≥ 0. Note that

0 ≤ D1 ∼R D
′
1 ≥ 0

are two R-divisors onX with no common components, and thatD1+D′1
has fewer components than D +D′. By induction we may then find

D′′1 ∈ |D1|R,
such that a multiple of every component of D′′1 is mobile. But then

D′′ = λC ′′ +D′′1 ∈ |D|R,
and every component of D′′ has a multiple which is mobile. �

Proof of (9.6). We may write D = M + F , where every component
of F is contained in B(D/U) and no component of M is contained in
B(D/U). We proceed by induction on the number of components B of
M such that no multiple of B is mobile.
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Fix one such component B. It suffices to find D′ ∈ |D/U |R such
that B is not a component of D′ and with the property that if B′ is a
component of D′ such that no multiple of B′ is mobile, then B′ is also
a component of D. Now we may find D1 ∈ |D/U |R such that B is not
a component of D1. Cancelling common components of D1 and D, by
(9.8), one sees that D ∼R,U D

′ = D′′+E where every component of D′′

has a multiple which is mobile and SuppE ⊂ SuppD ∩ SuppD1. �

Lemma 9.9. Let π : X −→ U be a proper morphism of normal quasi-
projective varieties. Let D be a R-Cartier divisor on X and let D′ be
its restriction to the generic fibre of π.

If D′ ∼R B′ ≥ 0 for some R-divisor B′ on the generic fibre of π,
then there is a divisor B on X such that D ∼R,U B ≥ 0.

Proof. Taking the closure of the generic points of B′, we may assume
that there is an R-divisor B1 ≥ 0 on X such that the restriction of B1

to the generic fibre is B′. As

D′ −B′ ∼R 0,

it follows that there is an open subset U1 of U , such that

(D −B1)|V1 ∼R 0,

where V1 is the inverse image of U1. But then there is a divisor G on
X such that

D −B1 ∼R G,

where Z = π(SuppG) is a proper closed subset. As U is quasi-
projective, there is an ample divisor H on U which contains Z. Possibly
rescaling, we may assume that F = π∗H ≥ −G. But then

D ∼R (B1 + F +G)− F,
so that

D ∼R,U (B1 + F +G) ≥ 0. �

Lemma 9.10. Let π : X −→ U be a proper morphism of normal quasi-
projective varieties. Let (X,∆) be a kawamata log terminal pair. Let
f : Z −→ X be any log resolution of (X,∆) and suppose that we write

KZ + Φ0 = f ∗(KX + ∆) + E,

where Φ0 ≥ 0 and E ≥ 0 have no common components, f∗Φ0 = ∆ and
E is exceptional. Let F ≥ 0 be any divisor whose support is equal to
the exceptional locus of f .

Then we may find η > 0 such that if Φ = Φ0 + ηF then

• f∗Φ = ∆,
• KZ + Φ is kawamata log terminal,
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• if ∆ is big over U then so is Φ, and
• the log terminal models (respectively weak log canonical models)

over U of KX + ∆ and the log terminal models (respectively
weak log canonical models) over U of KZ + Φ are the same.

Proof. Everything is clear, apart from the fact that if φ : Z 99K W is a
log terminal model (respectively weak log canonical model) over U of
KZ +Φ then it is a log terminal model (respectively weak log canonical
model) over U of KX + ∆.

Let ψ : X 99K W be the induced birational map and set Ψ = φ∗Φ.
By what we have already observed, possibly blowing up more, we may
assume that φ is a morphism. By assumption if we write

KZ + Φ = φ∗(KW + Ψ) +G,

then G > 0 and the support of G is the full φ-exceptional locus (re-
spectively G is exceptional). Thus

f ∗(KX + ∆) + E + ηF = φ∗(KW + Ψ) +G.

By negativity of contraction (cf. (2.7)) G − E − ηF ≥ 0, so that in
particular φ must contract every f -exceptional divisor and ψ−1 does not
contract any divisors. But then, ψ is a log terminal model (respectively
weak log canonical model) over U by (??). �

10. Finiteness of models, the big case

Lemma 10.1. Assume Theorem 5.12n.
Let π : X −→ U be a projective morphism of normal quasi-projective

varieties, where X has dimension n. Suppose that there is a kawamata
log terminal pair (X,∆′0). Let V be a finite dimensional rational affine
subspace of the space of Weil divisors on X. Fix a general ample Q-
divisor A over U . Let C ⊂ LA(V ) be a rational polytope. Suppose that
either

(1) if ∆ ∈ C then KX + ∆ is π-big, or
(2) Theorem 7.23n holds.

Then there are finitely many rational maps φi : X 99K Yi over U ,
1 ≤ i ≤ k, with the property that if ∆ ∈ C ∩ EA,π(V ) then there is an
index 1 ≤ i ≤ k such that φi is a log terminal model of KX + ∆ over
U .

Proof. As LA(V ) is a rational polytope, we may assume that C spans
VA. We proceed by induction on the dimension of V .

First suppose that dimV > 0 and that there is a divisor ∆0 ∈ C such
that KX + ∆0 ∼R,U 0. Pick Θ ∈ C, Θ 6= ∆0. Then there is a divisor ∆
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on the boundary of C such that

Θ−∆0 = λ(∆−∆0),

for some 0 < λ ≤ 1. Now

KX + Θ =λ(KX + ∆) + (1− λ)(KX + ∆0)

∼R,Uλ(KX + ∆).

In particular ∆ ∈ EA,π(V ) if and only if Θ ∈ EA,π(V ) and (11.7) implies
that KX + ∆ and KX + Θ have the same log terminal models. On
the other hand the boundary of C is contained in finitely many affine
hyperplanes defined over the rationals, and we are done by induction
on the dimension of V in this case.

We now prove the general case. By (8.5), we may assume thatKX+∆
is kawamata log terminal for all ∆ ∈ C and that if dimV > 0 then C
is contained in the interior of LA(V ). Since LA(V ) is compact and
C ∩ EA,π(V ) is closed, it suffices to prove this result locally about any
divisor ∆0 ∈ C ∩ EA,π(V ). By assumption there is a divisor D0 ≥ 0
such that KX + ∆ ∼R,U D0 and so, as we are assuming Theorem 5.12n,
there is a log terminal model φ : X 99K Y over U for KX + ∆0. In
particular we may assume that dimV > 0.

As φ is (KX + ∆0)-negative there is a neighbourhood C0 of ∆0 in
LA(V ), which we may assume to a be rational polytope, such that for
any ∆ ∈ C0 and any φ-exceptional divisor E contained in X, we have
a(E,X,∆) < a(E, Y, φ∗∆). If KX+∆0 is π-big then, possibly shrinking
C0, we may assume that KX+∆ is π-big for all ∆ ∈ C0. Since KY +φ∗∆0

is kawamata log terminal and Y is Q-factorial, possibly shrinking C0, we
may assume that KY +φ∗∆ is kawamata log terminal for all ∆ ∈ C0. In
particular, replacing C by C0, we may assume that the rational polytope
C ′ = φ∗(C) is contained in Lφ∗A(W ), where W = φ∗V . By (8.4), there
is a rational affine linear map L : W −→ V ′ and a general ample Q-
divisor A′ over U such that L(C ′) ⊂ LA′(V ′). Replacing V ′A′ by the span
of L(C ′), we may assume that dimV ′ ≤ dimV . By (??) and (10.7),
any log terminal model of (Y, φ∗∆) over U is a log terminal model of
(X,∆) over U , for any ∆ ∈ C. Replacing X by Y we may therefore
assume that KX + ∆0 is π-nef.

By (6.10) KX + ∆0 has an ample model ψ : X −→ Z over U . In
particular KX + ∆0 ∼R,Z 0. By what we have already proved there
are finitely many birational maps φi : X 99K Yi over Z, 1 ≤ i ≤ k,
such that for any ∆ ∈ C ∩ EA,ψ, there is an index i such that φi is a
log terminal model of KX + ∆ over Z. But then, since there are only
finitely many models Yi, possibly shrinking C, (10.8) implies that if
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∆ ∈ C then there is an index 1 ≤ i ≤ k such that φi is a log terminal
model for KX + ∆ over U . �

Lemma 10.2. Assume Theorem 5.12n.
Let π : X −→ U be a projective morphism of normal quasi-projective

varieties, where X has dimension n. Suppose that there is a kawamata
log terminal pair (X,∆0). Let V be a finite dimensional rational affine
subspace of the space of Weil divisors on X. Fix a general ample Q-
divisor A over U . Let C ⊂ LA(V ) be a rational polytope. Suppose that
either

(1) if ∆ ∈ C then KX + ∆ is π-big, or
(2) Theorem 7.23n holds.

Then we can find finitely many rational maps φi : X 99K Yi over U ,
1 ≤ i ≤ k, such that if φ : X 99K Y is a log terminal model of KX + ∆,
where ∆ ∈ C, then there is an index 1 ≤ i ≤ k and an isomorphism
η : Yi −→ Y such that φ = η ◦ φi.

Proof. Pick Q-Cartier divisors B1, B2, . . . , Bl ≥ 0 which generate the
group of Weil divisors modulo relative numerical equivalence. By (8.5)
we may assume that there is a rational number ε > 0 such that εC ≤ ∆
and KX +∆+εC is kawamata log terminal, where C =

∑
Bj. Further,

in case (1), possibly replacing ε by a smaller number, we may assume
that if ∆ ∈ C then KX + ∆− εC is π-big. Let W be the rational affine
space spanned by V and the divisors B1, B2, . . . , Bl. If we set

C ′ = {∆ +
∑

biBi |∆ ∈ C and |bi| ≤ ε },

then C ′ ⊂ LA(W ) is a rational polytope and if ∆′ ∈ C ′ then KX + ∆′

is kawamata log terminal and π-big in case (1).
By (10.1) there are rational maps φi : X 99K Yi over U , 1 ≤ i ≤ k,

such that given any Θ ∈ C ′ ∩EA,π(W ), we may find an index 1 ≤ i ≤ k
such that φi is a log terminal model of KX + Θ over U . Pick ∆ ∈
C and let φ : X 99K Y be a log terminal model of KX + ∆ over U .
Let Gi = φ∗Bi and Γ = φ∗∆. Then the divisors G1, G2, . . . , Gl span
the group of Weil divisors of Y modulo relative numerical equivalence.
Since Y is Q-factorial, we may find rational numbers b1, b2, . . . , bl such
that G =

∑
biGi is ample over U . If we set B =

∑
biBi then, possibly

replacing G by a small multiple, we may assume that |bi| ≤ ε and φ is
(KX + ∆ +B)-negative. But then ∆ +B ∈ C ′∩EA,π(W ) and φ is a log
terminal model for KX + ∆ +B over U . As KY + Γ +G is ample over
U , (10.9) implies that there is an index 1 ≤ i ≤ k and an isomorphism
η : Yi −→ Y such that φ = η ◦ φi. �

Lemma 10.3. Assume Theorem 5.12n.
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Let π : X −→ U be a projective morphism of normal quasi-projective
varieties, where X has dimension n. Suppose that there is a kawamata
log terminal pair (X,∆0). Let V be a finite dimensional rational affine
subspace of the space of Weil divisors on X. Fix a general ample Q-
divisor A over U . Let C ⊂ LA(V ) be a rational polytope. Suppose that
either

(1) if ∆ ∈ C then KX + ∆ is π-big, or
(2) Theorem 7.23n holds.

Then we can find finitely many rational maps φi : X 99K Yi over U ,
1 ≤ i ≤ k, such that if φ : X 99K Y is a Q-factorial weak log canonical
model of KX + ∆, where ∆ ∈ C, then there is an index 1 ≤ i ≤ k and
an isomorphism η : Yi −→ Y such that φ = η ◦ φi.

Proof. By (8.5) we may assume that if ∆ ∈ C then KX+∆ is kawamata
log terminal. Possibly enlarging V , we may assume that V is the vector
space spanned by a finite set of prime divisors I. Let J be the set
of prime divisors contracted by any log terminal model of KX + ∆
over U , for any divisor ∆ ∈ LA(V ). By (10.2) we may find finitely
many birational maps φi : X 99K Yi, 1 ≤ i ≤ k, over U such that
if φ : X 99K Y is a log terminal model of KX + ∆ over U , for some
∆ ∈ LA(V ), then there is an index 1 ≤ i ≤ k and an isomorphism
η : Yi −→ Y such that φ = η ◦ φi. In particular the set J is finite. Let
W be the vector space spanned by I ∪ J . Note that the set of prime
divisors contracted by any log terminal model of KX + ∆ over U , for
any ∆ ∈ LA(W ), is also equal to J . Thus replacing V by W we may
assume that J ⊂ I.

Pick ∆ ∈ LA(V ) and let φ : X 99K Y be any Q-factorial weak log
canonical model of KX + ∆ over U . Pick F ≥ 0, with support equal
to the exceptional locus of φ such that KX + ∆ + F is kawamata log
terminal. In particular ∆ + F ∈ LA(V ). On the other hand φ is
negative with respect to KX + ∆ + F and

KY + Γ = φ∗(KX + ∆) = φ∗(KX + ∆ + F ),

is nef over U . Thus φ is a log terminal model of KX + ∆ + F over U
and so there is an index 1 ≤ i ≤ k and an isomorphism η : Yi −→ Y
such that φ = η ◦ φi. �

Lemma 10.4. Theorem 5.12n implies Theorem 7.22n.

Proof. This is (1) of (10.3). �

In terms of induction, we will need a version of Theorem 7.24n locally
around the locus where KX + ∆ is not kawamata log terminal. To this
end we need a version of (8.2) for a convex set of divisors:
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Proposition 10.5. Assume Theorem 5.12n and Theorem 7.22n.
Let (X,∆0 = S + A + B0 ∈ EA) be a log smooth projective purely

log terminal pair of dimension n, where x∆0y = S, A is ample and
B ≥ 0. Let V0 be the vector space of Weil divisors on X generated
by the components of B0. Fix a general ample divisor H such that
KX + ∆0 + H is ample, and let V be the translate by S + A, of the
vector space spanned by V0 and H. Given any polytope F in V , the
cone C(F ) over F (with vertex ∆0) is the polytope spanned by F and
∆0.

Pick a constant α > 0 such that

F = {∆0 + E +H ∈ V | ‖E‖ ≤ α,E ∈ V0 } ⊆ NA
and let C0 = C(F ). If KX + ∆0 does not have a log terminal model
then there is a countable collection of polytopes Pi and birational maps
φi : X 99K Yi such that

(1) P◦i ∩P◦j = ∅ for any i 6= j such that Pi and Pj are of maximal
dimension,

(2) Pi ⊂ WYi,
(3) for any ∆ = ∆0 +E +H ∈ F , a (KX + ∆0)-MMP with scaling

of E +H is given by

X 99K Yi1 99K Yi2 99K Yi3 · · · ,

for appropriate indices ij,
(4) for all ε > 0, the set

{ i ∈ I | ∃∆ = ∆0 + t(E +H) ∈ Pi, t > ε },

is finite, and
(5) if Ci denotes the cone over Pi, then

Ci − {∆0} =
⋃
{Pj | Pj ⊂ Ci }.

Proof. By assumption the set

P0 = C0 ∩NA,

does not contain ∆0. By (??), P0 is a polytope. Let φ0 : X 99K Y0 = X
be the identity map. Note that C0 is indeed the cone over P0.

Suppose that we have defined P1,P2, . . . ,Pk, satisfying (1), (2) and
a modified version of (3), where we stop the MMP in (3) when ∆ lies on
the boundary of ∪Pi. Let Fi,j be the faces of Pi, whose associated cones
are of maximal dimension. For any such face, let F = Fi,j and let Ck+1

be the corresponding cone. If Pi is of maximal dimension, we discard
F whenever Ck+1 = Ci, for some i < k. Let R be a (KX + ∆0)-extremal
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ray of Yi, which cuts out F . Let Yi 99K Yk+1 be the corresponding step
of the (KX + ∆0)-MMP.

Let Pk+1 be the nef cone of Yk+1 intersected with Ck+1. As before
Pk+1 is a polytope that, by assumption, does not contain ∆0.

Thus, by induction, we may assume that we have constructed a
countable set of polytopes Pi and rational maps φi : X 99K Yi satis-
fying (1), (2) and the modified version of (3) described above. Note
that property (4) follows from Theorem 7.22n, and (3) and (5) follow
from (4), since each Ci contains infinitely many Pj. �

Lemma 10.6. Assume Theorem 7.24n−1, Theorem 5.12n and Theo-
rem 7.22n. Let (X,∆0 = S + A + B0) be a purely log terminal pair,
where X is projective of dimension n, A is ample, x∆0y = S and
B0 ≥ 0. Suppose that KX + ∆0 is pseudo-effective and S is not a
component of Nσ(KX + ∆0).

Let V0 be the span of the components of B0. Then we may find an
ample divisor H, a positive constant α, and a log pair (W,R) with the
following properties. Let V be the translate by S+A of the vector space
of Weil divisors on X generated by H and the components of B0.

Then for every B ∈ V0 such that

‖B −B0‖ < αt,

for any t ∈ (0, 1], we may find a log terminal model φ : X 99K Y of
(X,∆ = S +A+B + tH) which does not contract S and such that the
pairs (W,R) and (Y, T = φ∗S) have isomorphic neighbourhoods of R
and T .

Proof. Suppose not. Passing to a log resolution, we may assume that
(X,∆0) is log smooth cf. (9.10). Using the notation established in
(10.5) and possibly relabelling, by assumption there is no Ck such that
for any two elements ∆1 and ∆2 in Ck, the corresponding models have
isomorphic neighbourhoods of T . Hence we may find a sequence of
polytopes Pi, such that the corresponding cones are nested Ci ⊂ Ci−1,
and moreover the corresponding Yi are not eventually isomorphic in a
neighbourhood of T . By compactness of F , we may find ∆ ∈ F such
that (∆0,∆] ∩ Ci 6= ∅ for every i. By (3) of (10.5), the corresponding
(KX + ∆0)-MMP with scaling of E+H = ∆−∆0 is not eventually an
isomorphism in a neighbourhood of S and this contradicts (8.2). �

10.1. Lemmas.

Lemma 10.7. Let π : X −→ U be a projective morphism of normal
quasi-projective varieties. Suppose that KX + ∆ is divisorially log ter-
minal and let φ : X 99K Y be a birational map over U such that φ−1
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does not contract any divisors, KY + φ∗∆ is divisorially log terminal
and a(F,X,∆) < a(F, Y, φ∗∆) for all φ-exceptional divisors F ⊂ X.

If ϕ : Y 99K Z is a log terminal model of (Y, φ∗∆) over U , then
η = ϕ ◦ φ : X 99K Z is a log terminal model of (X,∆) over U .

Proof. Clearly η−1 contracts no divisors and Z is Q-factorial and KZ +
η∗∆ is nef. By (??), it suffices to show that a(F,X,∆) < a(F,Z, η∗∆)
for all η-exceptional divisors F ⊂ X.

Let p : W −→ X, q : W −→ Y and r : W −→ Z be a common
resolution. As ϕ is a log terminal model of (Y, φ∗∆) we have that
q∗(KY + φ∗∆) − r∗(KZ + η∗∆) = E ≥ 0 and its support contains the
exceptional divisors of ϕ. Since

p∗(KX + ∆)− r∗(KZ + η∗∆) = p∗(KX + ∆)− q∗(KY + φ∗∆) + E

the assertion follows easily. �

Corollary 10.8. Let π : X −→ U be a projective morphism of normal
quasi-projective varieties. Let V be a finite dimensional affine subspace
of the real vector space of Weil divisors on X, which is defined over the
rationals. Fix a general ample Q-divisor A over U . Let (X,∆0) be a
kawamata log terminal pair, let f : X −→ Z a morphism over U such
that ∆0 ∈ VA and KX + ∆0 = f ∗H, for some ample divisor H. Let
φ : X 99K Y be a birational map over Z.

Then there is a neighbourhood P0 of ∆0 in LA(V ) such that for all
∆ ∈ P0

• φ : X 99K Y is a log terminal model of KX + ∆ over Z if and
only if φ is a log terminal model of KX + ∆ over U .

Lemma 10.9. Let π : X −→ U be a projective morphism of normal
quasi-projective varieties.

If KX +∆ is kawamata log terminal then the ample model of KX +∆
over U is unique, if it exists at all.

Proof. Let Z1 and Z2 be ample models for KX+∆ over U . By definition
we may find log terminal models φi : X 99K Yi for KX + ∆ over U and
morphisms fi : Yi −→ Zi over U such that, KYi + Γi ∼R f ∗i Hi, where
Hi is an ample divisor over U and Γi = φi∗∆, for i = 1 and 2.

Suppose that g : W −→ X resolves the indeterminacy of φi, for i = 1
and 2. Let Ψ ≥ 0 be the divisor on W whose existence is guaranteed
by (9.10). Then (Yi,Γi) is also a log terminal model for KW + Ψ, for
i = 1 and 2.

Thus replacing (X,∆) by (W,Ψ) we may assume that φi is a mor-
phism over U . In particular, there are divisors Ei ≥ 0, exceptional for
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φi, such that
KX + ∆ = φ∗i (KYi + Γi) + Ei,

for i = 1 and 2. As KYi + Γi is nef, for i = 1 and 2, negativity of
contraction implies that E1 = E2. In particular g∗1H1 ∼R g

∗
2H2, where

gi = fi ◦ φi and so Z1 ' Z2. �

11. Non-vanishing

We follow the general lines of the proof of the non-vanishing theorem,
see for example Chapter 3, §5 of [10]. In particular there are two cases:

Lemma 11.1. Assume Theorem 5.12n. Let (X,∆) be a projective, log
smooth, kawamata log terminal pair of dimension n, such that KX + ∆
is pseudo-effective and ∆− A ≥ 0 for an ample Q-divisor A. Suppose
that for every positive integer k such that kA is integral,

h0(X,OX(xmk(KX + ∆)y+ kA)),

is a bounded function of m.
Then there is an R-divisor D such that KX + ∆ ∼R D ≥ 0.

Proof. By (11.6) it follows that KX + ∆ is numerically equivalent to
Nσ(KX +∆). Since Nσ(KX +∆)− (KX +∆) is numerically trivial and
ampleness is a numerical condition, it follows that

A′′ = A+Nσ(KX + ∆)− (KX + ∆),

is ample and numerically equivalent to A. Thus if A′ ∼R A
′′ is general

KX + ∆′ = KX + A′ + (∆− A),

is kawamata log terminal and numerically equivalent to KX + ∆, and

KX + ∆′ ∼R Nσ(KX + ∆) ≥ 0.

Thus by Theorem 5.12n, KX+∆′ has a log terminal model φ : X 99K Y ,
which, by (11.7), is also a log terminal model for KX + ∆. Replacing
(X,∆) by (Y,Γ) we may therefore assume that KX + ∆ is nef and the
result follows by the base point free theorem, cf. (??). �

Lemma 11.2. Let (X,∆) be a projective, log smooth, kawamata log
terminal pair such that ∆ = A + B, where A is a general ample Q-
divisor and B ≥ 0. Suppose that there is a positive integer k such that
kA is integral and

h0(X,OX(xmk(KX + ∆)y+ kA)),

is an unbounded function of m.
Then we may find a projective, log smooth, purely log terminal pair

(Y,Γ) and a general ample Q-divisor C on Y , where
90



• Y is birational to X,
• Γ− C ≥ 0,
• T = xΓy is an irreducible divisor, and
• Γ and Nσ(KY + Γ) have no common components.

Moreover the pair (Y,Γ) has the property that KX +∆ ∼R D ≥ 0 for
some R-divisor D if and only if KY + Γ ∼R G ≥ 0 for some R-divisor
G.

Proof. Pick m large enough so that

h0(X,OX(xmk(KX + ∆)y+ kA)) >

(
kn+ n

n

)
.

By standard arguments, given any point x ∈ X, we may find an effec-
tive divisor which is R-linearly equivalent to

xmk(KX + ∆)y+ kA,

of multiplicity greater than kn at x. In particular, we may find an
R-divisor

0 ≤ H ∼R m(KX + ∆) + A,

of multiplicity greater than n at x. Given t ∈ [0,m], consider

(t+ 1)(KX + ∆) = KX +
m− t
m

A+B + t(KX + ∆ +
1

m
A)

∼R KX +
m− t
m

A+B +
t

m
H

= KX + ∆t.

Fix 0 < ε� 1, let A′ = (ε/m)A and u = m− ε. We have:

(1) KX + ∆0 is kawamata log terminal,
(2) ∆t ≥ A′, for any t ∈ [0, u] and
(3) the locus of log canonical singularities of (X,∆u) contains a

very general point x of X.

Let π : Y −→ X be a common log resolution of (X,∆t). We may
write

KY + Ψt = π∗(KX + ∆t) + Et,

where Et ≥ 0 and Ψt ≥ 0 have no common components, π∗Ψt = ∆t

and Et is exceptional. Pick an exceptional divisor F ≥ 0 and a positive
integer l such that l(π∗A′−F ) is very ample and let lC be a very general
element of the linear system |l(π∗A′ − F )|. For any t ∈ [0, u], let

Φt = Ψt−π∗A′+C+F ∼R Ψt and Γt = Φt−Φt∧Nσ(KY +Φt).

Then properties (1-3) above become

(1) KY + Γ0 is kawamata log terminal,
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(2) Γt ≥ C, for any t ∈ [0, u], and
(3) (Y,Γu) is not kawamata log terminal.

Moreover

(4) (Y,Γt) is log smooth, for any t ∈ [0, u], and
(5) Γt and Nσ(KY + Γt) do not have any common components.

Let

s = sup{ t ∈ [0, u] |KY + Γt is log canonical }.
Note that

Nσ(KY + Φt) = Nσ(KY + Ψt)

= Nσ(π∗(KX + ∆t)) + Et

= Nσ((t+ 1)π∗(KX + ∆)) + Et

= (t+ 1)Nσ(π∗(KX + ∆)) + Et.

Thus KY + Γt is a continuous, piecewise linear function of t. Setting
Γ = Γs, we may write

Γ = T + C +B′,

where xΓy = T , C is ample and B′ ≥ 0. Possibly perturbing Γ, we may
assume that T is irreducible, so that KY +Γ is purely log terminal. �

We will need the following consequence of Kawamata-Viehweg van-
ishing:

Lemma 11.3. Let (X,∆ = S + A + B) be a Q-factorial projective
purely log terminal pair and let m > 1 be an integer. Suppose that

(1) S = x∆y is irreducible,
(2) m(KX + ∆) is integral,
(3) m(KX + ∆) is Cartier in a neighbourhood of S,
(4) h0(S,OS(m(KX + ∆))) > 0,
(5) KX +G+B is kawamata log terminal, where G ≥ 0,
(6) A ∼Q (m− 1)tH +G for some t,
(7) KX + ∆ + tH is big and nef.

Then h0(X,OX(m(KX + ∆))) > 0.

Proof. Considering the long exact sequence associated to the restriction
exact sequence,

0 −→ OX(m(KX+∆)−S) −→ OX(m(KX+∆)) −→ OS(m(KX+∆)) −→ 0,

it suffices to observe that

H1(X,OX(m(KX + ∆)− S)) = 0,
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by Kawamata-Viehweg vanishing, since

m(KX + ∆)− S = (m− 1)(KX + ∆) +KX + A+B

∼Q KX +G+B + (m− 1)(KX + ∆ + tH)

and KX + ∆ + tH is big and nef. �

Lemma 11.4. Theorem 7.23n−1, Theorem 7.24n−1, Theorem 5.12n and
Theorem 7.22n, imply Theorem 7.23n.

Proof. By (9.9), it suffices to prove this result for the generic fibre of
U . Thus we may assume that U is a point, so that X is a projective
variety.

By (9.10) we may assume that (X,∆) is log smooth. By (8.6) we
may assume that ∆ = A + B, where A ≥ 0 is a general ample Q-
divisor and B ≥ 0. By (11.1) and (11.2), we may therefore assume
that ∆ = S+A+B, where (X,∆) is a log smooth purely log terminal
pair, A is a general ample Q-divisor, B ≥ 0 and x∆y = S is irreducible
and not a component of Nσ(KX + ∆).

Let H be the ample divisor on X and α > 0 be the constant whose
existence is guaranteed by (10.6). Possibly replacing A by an R-linearly
equivalent divisor, we may assume that there is a positive constant ε
such that A − εH ≥ 0. Let V0 be the vector space of Weil divisors
spanned by the components of B and let V be the translate by S + A
of the span of V0 and H.

Given t > 0 and any B′ ∈ V0, ‖B′ −B‖ < αt, let

Ψ = S + A+B′ + tH.

Let φ : X 99K Y be the log terminal model of KX + Ψ, whose existence
is guaranteed by (10.6). Let T be the strict transform of S, let Γ = φ∗Ψ
and define Θ by adjunction

(KY + Γ)|T = KT + Θ.

By linearity we may formally extend the assignment Ψ −→ Θ to a
rational affine linear map

L : V −→ W,

to the whole of V , whereW is an appropriate finite dimensional rational
affine space of Weil divisors on T . In particular, L(∆) is big and by
(10.6) it follows that KT + L(∆) is nef.

Now by taking A′ = φ∗A|T , there is a rational polytope CT ⊂ NA′
containing L(∆) such that KT + Θ is kawamata log terminal for any
Θ ∈ CT , by (8.5) and (??). Moreover, we can find a rational polytope
C ⊂ LA containing ∆ such that L(C) = CT .
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We may find a positive integer k such that if r(KY + Γ) is integral
then rk(KY + Γ) is Cartier in a neighbourhood of T . By Kollár’s
effective base point free theorem, [8], we may find a positive integer M ′

such that if D is a nef Cartier divisor on T such that D − (KT + Ω)
is nef and big, where KT + Ω is kawamata log terminal, then M ′D is
base point free, where M ′ does not depend on either D or on Ω. Set
M = kM ′. Suppose that Θ ∈ CT . Then Θ ≥ A′, so that we may write

KT + Θ ∼R KT +G+ Θ′,

where G is ample and KT + G + Θ′ is kawamata log terminal. Now if
rk(KY + Γ)|T = rk(KT + Θ), then

rk(KT + Θ)− (KT + Θ′) ∼R (rk − 1)(KT + Θ) +G.

Thus, if r(KY + Γ) is integral, then Mr(KT + Θ) is base point free.
By (??), there are real numbers ri > 0 with

∑
ri = 1, positive

integers pi > 0 and Q-divisors ∆i ∈ C such that

pi(KX + ∆i),

is integral,

KX + ∆ =
∑

ri(KX + ∆i),

and

‖∆−∆i‖ ≤
αε

m i
,

where mi = Mpi. Let Θi = L(∆i).
By our choice of k, pik(KT + Θi) is Cartier. So, mi(KT + Θi) is base

point free and so

h0(T,OT (mi(KT + Θi))) > 0.

(11.3) implies that h0(Y,OY (mi(KY + Γi))) > 0, where Γi = φ∗∆i.
Notice that the pair (Y,Γi = T +φ∗A+φ∗B) clearly satisfies conditions
(1-4) of (11.3). We then let t = ε/mi so that φ∗A ≥ (mi− 1)tφ∗H and
condition (6) of (11.3) holds. Conditions (5) and (7) of (11.3) are now
easy to check.

As φ is (KX + ∆i + tH)-negative, it is certainly (KX + ∆i)-negative.
But then

h0(X,OX(mi(KX + ∆i))) = h0(Y,OY (mi(KY + Γi))) > 0.

In particular there is an R-divisor D such that

KX + ∆ =
∑

ri(KX + ∆i) ∼R D ≥ 0. �
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11.1. Lemmas. We will need some definitions and results from [13].

Definition-Lemma 11.5. Let X be a smooth projective variety, B be
a big R-divisor and let C be a prime divisor. Let

σC(B) = inf{multC(B′) |B′ ∼Q B,B
′ ≥ 0 }.

Then σC is a continuous function on the cone of big divisors.
Now let D be any pseudo-effective R-divisor and let A be any ample

Q-divisor. Let
σC(D) = lim

ε→0
σC(D + εA).

Then σC(D) exists and is independent of the choice of A.
There are only finitely many prime divisors C such that σC(D) > 0

and the R-divisor Nσ(D) =
∑

C σC(D)C is determined by the numeri-
cal equivalence class of D.

Proof. See §III.1 of [13]. �

Proposition 11.6. Let X be a smooth projective variety and let D be
a pseudo-effective R-divisor. Let B be any big R-divisor.

If D is not numerically equivalent to Nσ(D), then there is a positive
integer k and a positive rational number β such that

h0(X,OX(xmDy+ xkBy)) > βm, for all m� 0.

Proof. Let A be any integral divisor. Then we may find a positive
integer k such that

h0(X,OX(xkBy− A)) ≥ 0.

Thus it suffices to exhibit an ample divisor A and a positive rational
number β such that

h0(X,OX(xmDy+ A)) > βm for all m� 0.

Replacing D by D − Nσ(D), we may assume that Nσ(D) = 0. Now
apply (V.1.12) of [13]. �

Lemma 11.7. Let π : X −→ U be a projective morphism of normal
quasi-projective varieties. Let φ : X 99K Y be a birational map over
U such that φ−1 does not contract any divisors. Suppose that KX +
∆′ ∼R,U µ(KX + ∆) for some µ > 0, where both KX + ∆ and KX + ∆′

are log canonical (resp. Y is Q-factorial, KX + ∆ ≡U KX + ∆′ and
both KX + ∆ and KX + ∆′ are divisorially log terminal). Set Γ = φ∗∆
and Γ′ = φ∗∆

′.
Then Y is a weak log canonical model (respectively a log terminal

model) for KX + ∆ over U if and only if it is a weak log canonical
model (resp. a log terminal model) for KX + ∆′ over U .
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Proof. Note first that either KY +Γ′ ∼R,U µ(KY +Γ) or Y is Q-factorial.
In particular KY +Γ is R-Cartier if and only if KY +Γ′ is R-Cartier. If
p : W −→ X and q : W −→ Y resolve the indeterminancy of φ = q◦p−1,
then we may write

p∗(KX +∆) = q∗(KY +Γ)+E and p∗(KX +∆′) = q∗(KY +Γ′)+E ′.

Since µE − E ′ ≡Y 0 is q-exceptional, µE = E ′ by (2.7). Therefore, φ
is (KX + ∆)-non-positive (respectively (KX + ∆)-negative) if and only
if φ is (KX + ∆′)-non-positive (respectively (KX + ∆′)-negative).

Finally, one sees that since KX + ∆′ ≡U µ(KX + ∆) it follows that
KY + Γ′ ≡U µ(KY + Γ), so that KY + Γ is nef over U if and only if
KY + Γ′ is nef over U . �

12. Finiteness of models, the general case

Lemma 12.1. Theorem 5.12n and Theorem 7.23n imply Theorem 7.24n.

Proof. By (10.3), we can find finitely many rational maps φi : X 99K Yi
over U , 1 ≤ i ≤ k, such that if φ : X 99K Y is a Q-factorial weak
log canonical model of KX + ∆, where ∆ ∈ C then there is an index
1 ≤ i ≤ k and an isomorphism η : Yi −→ Y such that φ = η ◦ φi.
By (??) for each index 1 ≤ i ≤ k there are finitely many contraction
morphisms fij : Yi −→ Zij over U such that if ∆ ∈ WA,π(V ) and there
is a contraction morphism f : Y −→ Z over U , with

KY + Γ = KY + φ∗∆ = f ∗D,

for some divisor D on Z, then there is an isomorphism ξ : Zij −→ Z
such that f = ξ ◦ fij.

Pick ∆ ∈ LA(V ) and let ψ : X 99K W be any weak log canonical
model of KX + ∆ over U . By (8.6) we may find a kawamata log
terminal pair (X,∆′) such that KX + ∆′ ∼R,U KX + ∆. But then

KW + Ψ = KW + ψ∗∆
′ ∼R,U KW + ψ∗∆,

and KW + Ψ is kawamata log terminal. As we are assuming Theo-
rem 5.12n and Theorem 7.23n, there is a log terminal model g : W 99K
Y of KW +Ψ. But then KY +Γ = KY +g∗Ψ is divisorially log terminal
terminal, Y is Q-factorial and the inverse of f does not contract any
divisors. But the inverse f of g is the structure map. Thus f : Y −→ W
is a small morphism and

KY + Γ = f ∗(KW + Φ),

is nef over U . If φ : X 99K Y is the induced rational map then φ is
a Q-factorial weak log canonical model of KX + ∆′ over U . But then
(11.7) implies that φ is also a Q-factorial weak log canonical model of
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KX + ∆ over U . Thus there is an index 1 ≤ i ≤ k and an isomorphism
η : Yi −→ Y such that φ = η ◦ φi. Via the isomorphism η, and an
isomorphism ξ, the contraction f corresponds to one of the finitely
many contractions fij. �

13. The Sarkisov Program

13.1. Introduction. Recall the following.

Conjecture 13.1. Let (X,B) be a kawamata log terminal pair.
Then we may run a KX + B minimal model program, p : X 99K X ′

such that either

(1) (X ′, B′ = p∗B) is a minimal model (that is KX′ + B′ is nef),
or

(2) there is a Mori fiber space φ : X ′ → S (that is ρ(X ′/S) = 1 and
−(KX′ +B′) is φ-ample).

A KX +B minimal model program is a finite sequence of well under-
stood birational maps Xi 99K Xi+1 (known as KX +B flips and diviso-
rial contractions) inducing a rational map p : X = X0 99K X ′ = XN . If
KX +B is pseudo-effective (resp. not pseudo-effective), then (X ′, p∗B)
is a minimal model (resp. there is a Mori fiber space X ′ → S). By [?],
the only case in which (13.1) is not known to hold is when KX + B is
pseudo-effective and neither B nor KX + B are big. It is not the case
that a given pair (X,B) has a unique minimal model (resp. a unique
Mori fiber space), however the minimal model program predicts that
any two minimal models (resp. Mori fiber spaces) should be related in
a very precise manner (the terminalizations of two minimal models are
related by a sequence of flops, resp. two Mori fiber spaces are related
by a sequence of Sarkisov links cf. (13.11)).

Recently Kawamata [6] has proved:

Theorem 13.2. Let (X,B) be a Q-factorial terminal log-pair. Suppose
that (X ′, B′) and (X ′′, B′′) are two minimal models of (X,B).

Then the birational map X ′ 99K X ′′ may be factored as a sequence
of KX +B-flops.

Note that if neither B nor KX + B are big, then the existence and
finiteness of minimal models for (X,B) is still conjectural.

The Sarkisov program predicts that a result similar to (13.2) should
also hold in the case when KX+B is not pseudo-effective. The purpose
of this paper is to show that this is indeed the case.

Theorem 13.3. Let (X,B) be a Q-factorial kawamata log terminal
pair such that KX +B is not pseudo-effective.
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Then any two corresponding Mori fiber spaces are related by a se-
quence of Sarkisov links.

We say that two pairs (X ′, B′) and (X ′′, B′′) are birational if there
exists a birational map g : X ′ 99K X ′′ such that g∗B

′ = B′′ and
(g−1)∗B

′′ = B′. Note that if (X ′, B′) and (X ′′, B′′) are birational
Q-factorial terminal pairs, then it is easy to see that (X ′, B′) and
(X ′′, B′′) are the output of running a minimal model program for an
appropriate log pair (X,B). Consider in fact X a resolution of the
indeterminacies of φ so that X is smooth and we have morphisms
p : X → X ′ and q : X → X ′′ with φ = q ◦ p−1. Then, we may write
KX+(p−1)∗B

′ = p∗(KX′+B
′)+E ′ where E ′ is effective and its support

equals Ex(p). Since X ′ → X is birational, we may run the (X,B) min-
imal model program over X ′. It is easy to see that the output of this
minimal model program is X ′. Since (p−1)∗B

′ = (q−1)∗B
′′, a similar

statement holds for (X ′′, B′′). We therefore have the following:

Corollary 13.4. Let φ′ : (X ′, B′) → S ′ and φ′′ : (X ′′, B′′) → S ′′ be
two Mori fiber spaces of Q-factorial terminal pairs.

Then (X ′, B′) and (X ′′, B′′) are birational if and only if they are
related by a finite sequence of Sarkisov links.

In fact, the most interesting case of (13.3) is when B′ = B′′ = 0 and
X ′ and X ′′ have terminal singularities.

We now recall the definition of Sarkisov links:
Links of type (I)

Z 99K X1

↙
X ↓
↓
S ← S1

where Z 99K X1 is a sequence of flips, Z → X is a extremal divisorial
contraction, X1 → S1 is a Mori fiber space and ρ(S1/S) = 1.

Links of type (II)

Z 99K Z ′

↙ ↘
X X1

↓ ↓
S

∼← S1

where Z 99K Z ′ is a sequence of flips, Z → X and Z ′ → X1 are
extremal divisorial contractions and X1 → S1 is a Mori fiber space.
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Links of type (III)

X 99K Z ′

↘
↓ X1

↓
S → S1

where X 99K Z ′ is a sequence of flips, Z ′ → X1 is an extremal divisorial
contraction, X1 → S1 is a Mori fiber space and ρ(S/S1) = 1.

Links of type (IV)

X 99K X1

↓ ↓
S S1

↘ ↙
T

where X 99K X ′ is a sequence of flips, X1 → S1 is a Mori fiber space
and ρ(S/T ) = ρ(S1/T ) = 1.

In order to explain the origins of this program let us recall the well
known case of rational surfaces. In this case the minimal surfaces are
P2, P1 × P1 and Fn for n ≥ 2. A link of type I (resp. type III) relates
the Mori fiber spaces P2 → SpecC and F1 → P1 by blowing up a
point on P2 (resp. blowing down the −1 curve on F1). A link of type II
relates the Mori fiber spaces Fn → P1 and Fn±1 → P1 by an elementary
transformation i.e. by blowing up a point on a fiber and then blowing
down the strict transform of this fiber. A link of type IV is the identity
on P1 × P1 and interchanges the two Mori fiber space structures. The
content of (13.3) is not only that P2, P1 × P1 and Fn are all related
by links as above, but also that any birational map p : P2 99K P2

may be obtained by a sequence of such links. This last statement is
equivalent to the Nöether-Castelnuovo Theorem which says that the
group of birational transformations of P2 is generated by isomorphisms
of P2 and a single Cremona transformation.

The proof of (13.3) is based on the original ideas of the Sarkisov
program (as explained by Corti and Reid [2]). The main twist is that
we are unable to show termination of an arbitrary sequence of flips, nor
the acc property for log canonical thresholds. Instead our argument is
based of the principle of finiteness of minimal models for kawamata log
terminal pairs (Y,Γ) such that Γ varies in a compact subset of the big
cone (cf. (13.6)).

99



Acknowledgments. The first author was partially supported by NSF
grant 0456363 and by an AMS centennial scholarship. The second
author was partially supported by NSF grant...

13.2. Notation and conventions. We work over the field of complex
numbers C. An R-Cartier divisor D on a normal variety X is nef if
D ·C ≥ 0 for any curve C ⊂ X. We say that two R-divisors D1, D2 are
R-linearly equivalent (D1 ∼R D2) if D1 −D2 =

∑
ri(fi) where ri ∈ R

and fi are rational functions on X. We say that a R-Weil divisor D
is big if we may find an ample R-divisor A and an effective R-divisor
B, such that D ∼R A + B. A divisor D is pseudo-effective, if for any
ample divisor A and any rational number ε > 0, the divisor D + εA is
big. If A is a Q-divisor, we say that A is a general ample divisor if A is
ample and there is a sufficiently divisible integer M > 0 such that MA
is very ample and MA ∈ |MA| is very general. If A is a R-divisor, we
say that A is a general ample R-divisor if A =

∑
riAi where ri ∈ R

and Ai are general ample Q-divisors.
A log pair (X,∆) is a normal variety X and an effective R-Weil divi-

sor ∆ such that KX + ∆ is R-Cartier. We say that a log pair (X,∆) is
log smooth, if X is smooth and the support of ∆ is a divisor with global
normal crossings. A projective morphism g : Y → X is a log resolution
of the pair (X,∆) if Y is smooth and g−1(∆)∪{ exceptional set of g } is
a divisor with normal crossings support. We write g∗(KX+∆) = KY +Γ
and Γ =

∑
biΓi where Γi are distinct reduced irreducible divisors and

g∗Γ = ∆. The discrepancy of Γi is a(Γi, X,∆) = −bi.
A pair (X,∆) is kawamata log terminal (klt) if bi < 1 for all i. We

say that the pair (X,∆) is log canonical if bi ≤ 1 for all i. We say
that the pair (X,∆) is terminal if the discrepancy of any exceptional
divisor is greater than zero.

Let (X,B) and (X ′, B′) be kawamata log terminal pairs, then (X ′, B′)
is a minimal model of (X,B) if there is a birational map p : X 99K X ′

that extracts no divisors such that B′ = p∗B and KX′ +B′ is nef.
If p : X 99K X ′ is a rational map of normal varieties over a normal

variety S and H is a R-Cartier divisor on X which is the pull back of
a R-Cartier divisor on S, then we say that p is an H-trivial rational
map.

13.3. Preliminaries. We begin by recalling several results from [?]
that we will need in what follows.

Theorem 13.5. Let (X,B) be a klt pair such that either one of the
following three conditions hold: i) B is big, or ii) KX + B is big, or
iii) KX +B is not pseudo-effective.
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Then, any minimal model program with scaling for KX + B exists
and terminates after finitely many steps.

Proof. See [?]. �

Given a klt pair (X,B), we will say that a projective morphism of
normal varieties f : Y → Z is a nef model of (X,B) if φ : X 99K Y is a
minimal model of (X,B) and f is surjective with connected fibers and
KY + φ∗B = f ∗H for some nef R-divisor H on Z.

Theorem 13.6. Let X be a normal projective variety and V a finite
dimensional subspace of DivR(X). Let B0 be a big Q-divisor on X and
B be a compact subset of V such that for any B ∈ B, one has that
(X,B) is klt and B ≥ B0.

Then the set

{f : Y → Z|f is a nef model of (X,B), B ∈ B}
is finite.

Proof. See [?]. �

Corollary 13.7. Let (X,B) be a klt pair and E be any set of exceptional
divisors such that E contains only exceptional divisors E of discrepancy
a(E,X,B) ≤ 0.

Then there exists a birational morphism µ : X ′ → X and a Q-divisor
B′ on X ′ such that:

(1) (X ′, B′) is a Q-factorial klt pair,
(2) E is an exceptional divisor for µ if and only if E ∈ E,
(3) B′ =

∑
E⊂X −a(E;X,B)E so that µ∗B

′ = B and KX′ + B′ =
µ∗(KX +B).

Proof. See [?]. �

If E = {E|a(E,X,B) ≤ 0}, we say that X ′ is a terminalization of
X. If E contains a unique divisor say E, then we say that µ : X ′ → X
is a divisorial extraction of E.

Lemma 13.8. Let (W,BW ) be a terminal pair, (X,BX) a log pair and
f : W 99K X a birational map that extracts no divisors. If KX + BX

is nef and a(E,X,BX) ≥ a(E,W,BW ) for all divisors E ⊂ W then
a(E,X,BX) ≥ a(E,W,BW ) for all divisors E over W . In particular

(1) (X,BX) is kawamata log terminal,
(2) if X ′ → X is a divisorial extraction of a divisor E ′, with

a(E ′, X,BX) ≤ 0 then E ′ is a divisor contained in W , and
(3) if X ′ → X is a terminalization of (X,BX), then f ′ : W 99K X ′

extracts no divisors.
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Proof. Let Z be a common log resolution and p : Z → X and q : Z →
W be the induced morphisms. Then we may write

q∗(KW +BW ) = p∗(KX +BX) + F

where

q∗F =
∑
E⊂W

(a(E,X,BX)− a(E,W,BW ))E ≥ 0.

By the Negativity Lemma, it follows that F ≥ 0 and hence that
a(E,X,BX) ≥ a(E,W,BW ) for all divisorsE overW . As a(E,W,BW ) >
−1 for all divisors E over W , it follows immediately that (X,BX) is
kawamata log terminal. To see the second assertion, it suffices to no-
tice that as (W,BW ) is terminal and a(E ′,W,BW ) ≤ a(E ′, X,BX) ≤ 0,
then E ′ is not exceptional over W . Similarly, a terminalization only
extracts divisors E ′i of discrepancy a(E ′i, X,BX) ≤ 0. �

Definition 13.9. Let (X,BX) and (W,BW ) two Q-factorial log pairs
and f : W 99K X a birational map. We will write (W,BW ) ≥ (X,BX)
if:

(1) f extracts no divisors,
(2) a(E,W,BW ) ≤ a(E,X,BX) for all divisors E ⊂ W .

Definition 13.10. Let (X,BX) and (X ′, BX′) be kawamata log termi-
nal pairs. Then (X,BX) and (X ′, BX′) are Sarkisov related if there
exists a kawamata log terminal pair (W,BW ) such that (X,BX) and
(X ′, BX′) are the output of a (W,BW )-MMP.

Notice that if (X,BX) and (X ′, BX′) are Sarkisov related, then we
may find a log smooth terminal pair (W ′, BW ′) and morphisms p :
W ′ → X and q : W ′ → X ′ such that (X,BX) and (X ′, BX′) are the
output of a (W ′, BW ′)-MMP.

13.4. The main result.

Theorem 13.11. Let

X
Φ
99KX ′

φ

y yφ′
S S ′

be a birational map of Sarkisov related kawamata log terminal pairs
(X,BX) and (X ′, BX′) where φ is a KX + BX-Mori fiber space and φ′

is a KX′ +BX′-Mori fiber space.
Then Φ is given by a finite sequence of links of type I, II, III or IV.
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Proof. Let H ′ ∼R −(KX′ + BX′) + (φ′)∗A′, where A′ is an ample R-
divisor on S ′ which is very general in NSR(S ′) and H ′ is a general
ample R-divisor. Therefore, KX′ + BX′ + H ′ ∼R (φ′)∗A′ is nef and
(X ′, BX′ +H ′) is kawamata log terminal. Similarly, let C be a general
ample R-divisor on X such that (X,BX +C) is kawamata log terminal
and KX +BX +C ∼R φ

∗A where A is an ample R-divisor on S which is
very general in NSR(S). We may assume that (W,BW ) is log smooth,
p : W → X and q : W → X ′ are morphisms and BW + p∗C + q∗H ′ +
Ex(p) + Ex(q) has simple normal crossings. We let CW = (p−1)∗C =
p∗C and HW = (q−1)∗H = q∗H ′, then we may assume that (W,BW +
cCW + hHW ) is terminal for any 0 ≤ c, h ≤ 2.

Claim 13.12. There exists an integer N > 0 and a finite sequence of
links of type I, II, III and IV

X = X0 99K X1 99K . . . 99K XN

such that if φi : Xi → Si are the corresponding contraction morphisms,
pi : W 99K Xi the corresponding rational maps and Ci = (pi)∗CW ,
Hi = (pi)∗HW and BXi = (pi)∗BW , then

(1) there exist positive rational numbers

1 = c0 ≥ c1 ≥ c2 ≥ . . . ≥ cN = 0 and

0 = h0 ≤ h1 ≤ h2 ≤ . . . ≤ hN ≤ 1

such that KXi +BXi + ciCi + hiHi is nef,
(2) (Xi, BXi+ciCi+hiHi) ≤ (W,BW +ciCW +hiHW ) (in particular

pi : W 99K Xi extracts no divisors cf. (13.9)), and
(3) each link is given by a sequence of KXi + BXi + ciCi + hiHi

trivial rational maps (in particular KXi + BXi + ciCi + hiHi is
φi-numerically trivial).

Remark 13.13. We have that:

(1) By (13.8), (Xi, BXi + ciCi + hiHi) is kawamata log terminal.
(2) Let Σi be a very general φi-vertical curve. By our choices of H

and C, we have that Hi · Σi > 0 and Ci · Σi > 0 for all i ≥ 0.

Proof of 13.12. We let Σi be a very general φi-vertical curve and we
set ri = Hi · Σi/Ci · Σi. Let si+1 be the supremum of all numbers
0 ≤ σ ≤ ci/ri such that:

(1) KXi +BXi + ciCi + hiHi + σ(Hi − riCi) is nef, and
(2) (Xi, BXi + ciCi + hiHi + σ(Hi − riCi)) ≤ (W,BW + ciCW +

hiHW + σ(HW − riCW )).
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We will define Xj by induction on i. Assume that Xi has already been
defined for some i ≥ 0.

If si+1 = ci/ri, then we let N = i + 1 so that cN = ci − risi+1 = 0
and we are done.

If si+1 < ci/ri, we let ci+1 = ci−risi+1 > 0 and hi+1 = hi+si+1 ≥ hi.
Notice that KXi + BXi + ci+1Ci + hi+1Hi is nef and kawamata log
terminal. Let F be the extremal face defined by KXi +BXi + ci+1Ci +
hi+1Hi. Clearly Ri ⊂ F where Ri is the ray spanned by Σi.

Suppose that there is an X-exceptional divisor E ⊂ W such that

a(E,Xi, BXi + c′i+1Ci + h′i+1Hi) < a(E,W,BW + c′i+1CW + h′i+1HW )

for c′i+1 = ci+1 − εri, h′i+1 = hi+1 + ε and 0 < ε� 1. It follows that

a(E,Xi, BXi +ci+1Ci+hi+1Hi) = a(E,W,BW +ci+1CW +hi+1HW ) ≤ 0

and so by (13.7), there exists a divisorial extraction µ : Z → Xi which
extracts E. By (13.8), ϕ : W 99K Z extracts no divisors. We let

KZ +BZ + ci+1CZ + hi+1HZ = µ∗(KXi +BXi + ci+1Ci + hi+1Hi).

Notice that BZ = ϕ∗BW . We now run a minimal model program with
scaling over Si for

KZ + ∆Z = µ∗(KXi +BXi + (c′i+1 − δ)Ci + h′i+1Hi)

for some 0 < δ � ε� 1. Note that KZ+∆Z is a kawamata log terminal
pair numerically trivial over Xi and KXi +BXi + (c′i+1− δ)Ci + h′i+1Hi

is negative on Σi. Each step of this minimal model program is over
Si, so it is µ∗(KXi + Bi + c′i+1Ci + h′i+1Hi) numerically trivial and
hence Ci-positive. In particular this is a minimal model program for
µ∗(KXi +BXi + (c′i+1 − δ′)Ci + h′i+1Hi) for any 0 < δ′ ≤ δ.

Since Z is covered by KZ + ∆Z-negative curves (over Si), it follows
that KZ +∆Z is not pseudo-effective (over Si). Therefore, after finitely
many flips, we either have a KZ + ∆Z Mori fiber space or a KZ + ∆Z

divisorial contraction.
Case 1. In the first case, we have a sequence of flips η : Z 99K Xi+1

followed by a Mori fiber space φi+1 : Xi+1 → Si+1. This is a link of
type I.

Case 2. In the second case, we have a sequence of flips η : Z 99K Z ′

followed by a divisorial contraction ν : Z ′ → Xi+1. Since ρ(Xi+1/Si) =
1, one sees that there is an induced contraction morphism φi+1 : Xi+1 →
Si+1 := Si which is a KZ + ∆Z Mori fiber space (as KZ + ∆Z is not
pseudo-effective over Si). We have obtained a link of type II.

Suppose on the other hand that

a(E,Xi, BXi + c′i+1Ci + h′i+1Hi) ≥ a(E,W,BW + c′i+1CW + h′i+1HW )
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for any X-exceptional divisor E ⊂ W and for any 0 < ε � 1. In
this case F 6= Ri, and we may find an extremal ray P ⊂ F such
that P and Ri span a two dimensional face of F . Let Xi → T be
the corresponding contraction which factors through Si. We now run
a minimal model program over T for KXi + BXi + c′i+1Ci + h′i+1Hi

where as above c′i+1 = ci+1 − εri and h′i+1 = hi+1 + ε for some 0 <
ε � 1. Notice that Ri is KXi + BXi + c′i+1Ci + h′i+1Hi-trivial and P
is KXi + BXi + c′i+1Ci + h′i+1Hi-negative. After finitely many flips, we
either have a KXi + BXi + c′i+1Ci + h′i+1Hi minimal model, divisorial
contraction or Mori fiber space (over T ).

Case 3. In the first case, we let Xi 99K Xi+1 be the corresponding
sequence of flips. We have thatKXi+1

+BXi+1
+c′i+1Ci+1+h′i+1Hi+1 is nef

over T and there is a unique KXi+1
+BXi+1

+c′i+1Ci+1 +h′i+1Hi+1 trivial
extremal ray which is spanned by Σi+1 the pushforward of Σi. Let
φi+1 : Xi+1 → Si+1 be the corresponding fibration. We have obtained
a link of type IV.

Case 4. In the second case, we let Xi 99K Z ′ be the corresponding
sequence of flips and let Z ′ → Xi+1 be the corresponding divisorial
contraction. Since ρ(Xi+1/T ) = 1, one sees that there is an induced
contraction morphism φi+1 : Xi+1 → Si+1 := T . We have obtained a
link of type III.

Case 5. In the third case we let Xi 99K Xi+1 be the corresponding
sequence of flips and φi+1 : Xi+1 → Si+1 be the corresponding Mori
fiber space over T . We have obtained a link of type IV.

Lemma 13.14. We have that

(Xi+1, BXi+1
+ ci+1Ci+1 + hi+1Hi+1) ≤ (W,BW + ci+1CW + hi+1HW ).

Proof. The rational map Xi+1 99K Xi extracts a divisor E in Cases 1
and 2. Since E ⊂ W , one sees that W 99K Xi+1 extracts no divisors.
By definition of ci+1 and hi+1, we have that

(Xi, BXi + ci+1Ci + hi+1Hi) ≤ (W,BW + ci+1CW + hi+1HW ).

Since in Cases 1 and 2 (resp. Cases 3, 4 and 5) the rational map
Xi 99K Xi+1 is over Si (resp. over T ) and KXi+BXi+ci+1Ci+hi+1Hi is
numerically trivial over Si (resp. over T ), it follows that a(E,Xi, BXi +
ci+1Ci + hi+1Hi) = a(E,Xi+1, BXi+1

+ ci+1Ci+1 + hi+1Hi+1) for any
divisor E and so the inequality

a(E,Xi+1, BXi+1
+ci+1Ci+1+hi+1Hi+1) ≥ a(E,W,BW+ci+1CW+hi+1HW )

for all divisors E ⊂ W also holds. �

Lemma 13.15. We have that hi ≤ 1 for all i and if hi = 1, then ci = 0
and Xi 99K X ′ induces a rational map Si 99K S ′.
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Proof. We will proceed by induction. Since h0 = 0, it suffices to prove
that if hi ≤ 1 then hi+1 ≤ 1. Let ν : W ′ → W be a proper birational
morphism such that p′i = pi ◦ ν and q′ = q ◦ ν are appropriate log
resolutions. We may write KW ′ + BW ′ = ν∗(KW + BW ) + EW where
EW ≥ 0 is exceptional and BW ′ = (ν−1)∗BW . We let CW ′ = (ν−1)∗CW
and HW ′ = (ν−1)∗HW Assume that hi ≤ 1 and hi+1 > 1. Then there
is a number 1 < h < min{hi+1, 2} and we let c = ci− ri(h−hi) > ci+1.
We have

KW ′ +BW ′ + cCW ′ + hHW ′ = (p′i)
∗(KXi +BXi + cCi + hHi) + E,

KW ′ +BW ′ + hHW ′ = (q′)∗(KX′ +BX′ + hH ′) + E ′.

Note that since

(W ′, BW ′+cCW ′+hHW ′) ≥ (W,BW+cCW+hHW ) ≥ (Xi, BXi+cCi+hHi),

by (13.8), E is effective. Since H ′ is very general, E ′ is also effective.
Since Σi is a general φi-trivial curve, we may identify Σi with its inverse
image in W ′. We let q′∗Σi be its image in X ′. We have

0 = (KXi +BXi + cCi + hHi) · Σi = (KW ′ +BW ′ + cCW ′ + hHW ′) · Σi

≥ (KX′ +BX′ + hH ′) · q′∗Σi > 0.

This is a contradiction and so we may assume that hi+1 ≤ 1. If we
have hi+1 = 1, then one sees that ci+1 = 0 and q′∗Σi is φ′ vertical so
that Xi 99K X ′ induces a rational map Si 99K S ′. �

Note that KXi + BXi + ci+1Ci + hi+1Hi is pulled back from Si in
cases 1 and 2 and is pulled back from T in cases 3, 4 and 5. By (13.14)
and (13.15), we have that the link given by Xi 99K Xi+1, satisfies all
of the conditions of (13.12). To prove Claim 13.12, it suffices to show
that there exists an integer N > 0 such that cN = 0. To this end we
prove the following lemmas which will allow us to show that there is
no infinite sequence of links.

Lemma 13.16. For links of type III and IV, we have that the inequality

a(E,Xi+1, BXi+1
+c′i+1Ci+1+h′i+1Hi+1) ≥ a(E,W,BW+c′i+1CW+h′i+1HW )

for all divisors E ⊂ W for any 0 < ε� 1 also holds.

Proof. This follows from the fact that in cases 3, 4 and 5 we have the
inequality

a(E,Xi, BXi + c′i+1Ci + h′i+1Hi) ≥ a(E,W,BW + c′i+1CW + h′i+1HW )

and the fact that we are running a KXi +BXi +c
′
i+1Ci+h

′
i+1Hi minimal

model program (over T ). �
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Lemma 13.17. We have that ri+1 ≥ ri. Moreover, in Case 5, we have
that ri+1 > ri.

Proof. In Cases 3, 4 and 5, we let µ : Z → Xi be the identity and
E = 0. Since Z 99K Xi+1 is an isomorphism over a big open set of
Xi+1, we may identify Σi+1 and its preimage Σi+1 in Z. We claim that

Σi+1 · µ∗(KXi +BXi + c′i+1Ci + h′i+1Hi) ≤ 0

and the above inequality is strict in Case 5. In Cases 1 and 2, this
follows as Z 99K Xi+1 is an isomorphism in a neighborhood of Σi+1

and
Σi+1 · µ∗(KXi +BXi + (c′i+1 − δ)Ci + h′i+1Hi)0

Σi+1 · (Ki+1 +BXi+1
+ (c′i+1 − δ)Ci+1 + h′i+1Hi+1) < 0

for 0 � δ � ε � 1. In Cases 3 and 4, this is clear as −(KXi + BXi +
c′i+1Ci + h′i+1Hi) is nef over Si and Xi 99K Xi+1 is an isomorphism in a
neighborhood of Σi+1. In Case 5, we moreover obtain a strict inequality
as −(KXi+1

+BXi+1
+ c′i+1Ci+1 + h′i+1Hi+1) is ample over Si+1

Since
Σi+1 · µ∗(KXi +BXi + ci+1Ci + hi+1Hi) = 0,

we have that Σi+1 ·µ∗(Hi−riCi) ≤ 0. Since µ∗(Hi−riCi) = (µ−1)∗(Hi−
riCi) + eE for some e ≥ 0, we have that

Σi+1·(Hi+1−riCi+1) = Σi+1·(µ−1)∗(Hi−riCi) = Σi+1·(µ∗(Hi−riCi)−eE) ≤ 0,

or equivalently that

ri+1 =
Σi+1 ·Hi+1

Σi+1 · Ci+1

≤ ri.

Moreover, in Case 5, the above inequality is strict. �

Lemma 13.18. There are only finitely many possibilities for φi : X →
Si.

Proof. Notice that the pairs (Xi, BXi +ciCi+hiHi) are minimal models
for (W,BW + ciCW + hiHW ) where 0 ≤ ci, hi ≤ 1. Suppose that hi = 0
for all i, then si = hi+1 − hi = 0 for all i and so ci = c0 > 0 for all i
and by (13.6), the claim follows.

If hi > 0 for some i, then hj ≥ hi for all j ≥ i and again by (13.6)
the claim follows. �

Lemma 13.19. The sequence of links Xi 99K Xi+1 is finite.

Proof. Assume that the given sequence of links is infinite. By (13.18),
we may assume that φi : Xi → Si is isomorphic to φk : Xk → Sk for
some i < k. It then follows from the definitions of cj and hj, that
ck+1 = ci+1 and hk+1 = hi+1 and as these sequences are monotone,
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then cj = ci and hj = hi for all j ≥ i. By (13.17), we have that ri = rj
for all j ≥ i.

Assume that we have a link of type III or IV, then for all divisors
E ⊂ W we have

a(E,Xi, BXi + c′i+1Ci + h′i+1Hi) ≥ a(E,W,BW + c′i+1CW + h′i+1HW ).

By (13.16), this property continues to hold on Xi+1. Since ci+1 = ci
and ri+1 = ri it then follows that for all j ≥ i, all links Xj 99K Xj+1

are of type III or IV. Since links of type III (resp. IV) decrease (do not
change) ρ(Xi), there are only links of type IV (corresponding to Cases
3 and 5). The links of Cases 3 and 5 increase the discrepancies with
respect to KXi +BXi + c′i+1Ci + h′i+1Hi and in Case 3 strictly increase
at least one discrepancy (as in this case it is easy to see that Xi and
Xi+1 are not isomorphic). Therefore, we may assume that there are no
links as in Case 3. For any link of Case 5, by (13.17), we have that
ri+1 < ri and hence a contradiction.

Therefore, we may assume that we only have links of type I and
II. Since ρ(Xi+1) > ρ(Xi) (resp. ρ(Xi+1) = ρ(Xi)) for links of type I
(resp. of type II), it follows that there are no links of type I. But links
of type II increase the discrepancies with respect to KXi +BXi +(c′i+1−
δ)Ci + h′i+1Hi (for 0 < δ � ε � 1) and strictly increase at least some
discrepancy. This is the required contradiction. �

Since the sequence of links Xi 99K Xi+1 is finite, it follows that
cN = 0 for some N > 0 and hence (13.12) is proven. �

We may therefore assume that (XN , BXN + hNHN) ≤ (W,BW +
hNHW ) and that KXN +BXN +hNHN is nef and φN numerically trivial.

Claim 13.20. h := hN = 1 and XN 99K X ′ is an isomorphism induc-
ing an isomorphism SN → S ′.

Proof. Let ν : W ′ → W be a proper birational morphism such that
p′ = pN ◦ ν and q′ = q ◦ ν are appropriate log resolutions. We may
write KW ′ +BW ′ = ν∗(KW +BW ) +EW where EW ≥ 0 is exceptional
and BW ′ = (ν−1)∗BW . We have

KW ′ +BW ′ + hHW ′ = (p′)∗(KXN +BXN + hHN) + E,

KW ′ +BW ′ + hHW ′ = (q′)∗(KX′ +BX′ + hH ′) + E ′

where E is p′ exceptional and E ′ is q′-exceptional. Note that since
(W,BW + hHW ) ≥ (X,BXN + hHXN ), by (13.8), E is effective. By
(13.15), we have that h ≤ 1 and if h = 1, then X 99K X ′ induces a
rational map SN 99K S ′. Now let Σ′ be a general curve contracted by
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φ′. We may identify this curve with its inverse image in W ′ and we let
p′∗Σ

′ be its image in XN . If h < 1, we then have

0 > (KX′ +BX′ + hH ′) · Σ′ = (KW ′ +BW ′ + hHW ′) · Σ′

= (KXN +BXN + hHN) · q′∗Σ′ + E · Σ′.
Since E ·Σ′ ≥ 0, we have (KXN +BXN +hHN) · q′∗Σ′ < 0 contradicting
the fact that KXN + BXN + hHN is nef. Therefore h = 1. Now, let
D be an ample divisor on XN and D′ be its strict transform on X ′.
Note that D′ is relatively ample. Then KXN + BXN + HN + δD and
KX′ + BX′ + H ′ + δD′ are ample and kawamata log terminal for any
0 < δ � 1 and hence XN and X ′ are isomorphic (by uniqueness of log
canonical models). It then follows that the rational map SN 99K S ′ =
Proj(R(KX′ + BX′ + H ′)) is a morphism and in fact an isomorphism
as ρ(Xi/Si) = ρ(X ′/S ′) = 1. �

�

14. Further results

14.1. Fujita’s Approximation Theorem.

Theorem 14.1. Let L ∈ DivQ(X) be a big divisor on a normal irre-
ducible projective variety of dimension n. Then, for any ε > 0, there
exist a projective birational morphism f : Y → X and effective Q-
divisors A and B such that A is ample, f ∗L = A+B and

vol(A) ≥ vol(L)− ε.

Proof. We follow [12]. After resolving the singularities of X, we may
assume that X is smooth. It is enough to show that there is a nef Q
divisor A with the above properties (recall that if A is nef and big,
then A ∼Q H + F where H is ample and F is effective, but then
A− δF = (1− δ)A+ δH is ample for any 0 < δ < 1).

Let B ∈ Div(X) be very ample such thatKX+(n+1)B is very ample.
For any p ≥ 0, let Mp = pL − (KX + (n + 1)B) and Jp = J (||Mp||).
One sees that Mp ⊗ Jp is generated by global sections cf. (3.8) and
that

H0(OX(lMp)) ⊂ H0(OX(lpL⊗ J l
p)) ∀ l > 0.

To see the last assertion note that clearly

H0(OX(lMp)⊗ J (||Mp||)l) ⊂ H0(OX(lpL)⊗ J (||Mp||)l)
and that since by (3.22) J (||lMp||) ⊂ J (||Mp||)l, then by (3.32), we
have

H0(OX(lMp)) = H0(OX(lMp)⊗ J (||Mp||)l).
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Let f : Y → X be a log resolution of Jp so that Jp · OY = OY (−Ep)
where Ep ≥ 0. Then f ∗(pL) − Ep is generated by global sections and
hence nef. Notice that

H0(OY (l(f ∗(pL)− Ep))) ⊃ H0(OX(plL)⊗ J l
p) ⊃ H0(OX(lMp)).

Therefore,

(f ∗(pL)− Ep)n = vol(f ∗(pL)− Ep) ≥ vol(Mp) ≥ pn(vol(L)− ε)
and the result follows letting A = (1/p)(f ∗(pL)−Ep) and B = (1/p)Ep.

�

Definition 14.2. Let L ∈ DivQ(X) be a big divisor on a normal pro-
jective variety. For any m� 0 sufficiently divisible, φ|mL| is birational.

The moving self-intersection number (mL)[n] of |mL| is given by

(mL)[n] = ](D1 ∩ . . . ∩Dn ∩ (X − Bs(|mL|)))
where Di ∈ |mL| are general.

Theorem 14.3. Let L ∈ DivQ(X) be a big divisor on a normal pro-
jective variety. Then

vol(L) = lim sup
(mL)[n]

mn
.

Proof. Let fm : Ym → X be a log resolution of |mL| so that f ∗m|mL| =
|Pm|+Fm where |Pm| is base point free and Bs(|mL|) = (fm)∗(Fm). It
is easy to see that that since |Pm| is base point free, we have

(mL)[n] = ](M1 ∩ . . . ∩Mn) = P n
m

where Mi ∈ |Pm| are general. It then follows that

vol(L) = vol(mL)/mn ≥ vol(Pm)/mn ≥ P n
m = (mL)[n]/mn.

To see the reverse implication, consider ε, f : Y → X and A, B as
in (14.1). Pick k > 0 such that kA is very ample. Replacing Y by a
common resolution of Y and Yk, we can write

f ∗(kL) ∼Q Ak + Ek

where Ak ∼Q kA is generated by global sections and Ek ≥ 0 and

Ank ≥ kn(vol(L)− ε).
As |Ak| is base point free, we have Ek ≥ Fk and so

Ank ≤ P n
k = (kL)[n].

Therefore
(kL)[n]/kn ≥ vol(L)− ε

and the Theorem follows by taking the limit. �
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14.2. The Pseudo-effective Cone. We now recall a result of Boucksom-
Demailly-Paun-Peternell.

Theorem 14.4. Let L ∈ DivQ(X) be a big divisor on a normal irre-
ducible projective variety of dimension n. Let f : Y → X be a projective
birational morphism, A and B effective Q-divisors such that A is ample
and f ∗L = A+B. Let H ∈ DivQ(X), H ±L be ample, then there is a
constant C so that

(An−1 ·B)2 ≤ C ·Hn · (vol(L)− vol(A)).

Proof. See [12, §11]. �

Theorem 14.5. Let X be a normal irreducible projective variety of
dimension n. Then the cones Mov(X) and Eff(X) are dual.

Recall that Eff(X) is the closure of the big cone i.e. the cone of
pseudo-effective divisors. Mov(X) ⊂ N1(X)R is the cone of movable
(or mobile) curves i.e. the closed convex cone spanned by all curves of
the form

f∗(A1 · . . . · An−1)

where f : Y → X is a projective birational morphism and Ai are ample
divisors in DivR(Y ).

Notive that if D ∈ Div(X) is effective and γ ∈ Mov(X), then D ·γ ≥
0. It follows that

Mov(X) ⊂ Eff(X)∨.

Corollary 14.6. Let X be a smooth projective variety, the X is unir-
uled if and only if KX is not pseudo-effective.

Proof. By (14.5), there is a γ ∈ Mov(X) such that KX · γ < 0. This
implies that there is a covering family of curves Ct with KX · Ct < 0.
But by a result of Miyaoka and Mori, this is equivalent to X being
uniruled. �

Remark 14.7. Note that (14.6) also follows from the fact that as KX

is not pseudo-effective, then there is an MMP X 99K X ′ that ends with
a Mori-fiber space g : X ′ → S. The fibers of g are known to be uniruled
(and in fact rationally connected).

Proof of (14.5). (See [12, §11].) Since Mov(X) ⊂ Eff(X)∨, it suffices
to prove the reverse inclusion i.e. that Mov(X)∨ ⊂ Eff(X). Suppose
by way of contradiction that there is a class ξ on the boundary of
Eff(X) but in the interior of Mov(X)∨. In particular vol(ξ) = 0. Let
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h be an ample class such that h + ξ and h − ξ are ample. Note that
ξ − εh ∈ Mov(X)∨ for 0 < ε� 1 and so

ξ · γ
h · γ

≥ ε

for any mobile class γ. Notice that ξ+ δh is big for any 1� δ > 0 and
by (14.1), we may find

fδ : Yδ → X, f ∗δ (ξ + δh) = Aδ +Bδ

where Aδ is ample, Bδ ≥ 0,

(?) vol(Aδ) ≥ vol(ξ + δh)− δ2n ≥ 1

2
vol(ξ + δh) ≥ δn

2
· hn.

The class γδ = (fδ)∗(A
n−1
δ ) is movable and we have

(]) h · γδ = f ∗δ h · An−1
δ ≥ (hn)1/n · (Anδ )(n−1)/n

by the generalized Hodge inequalities. One sees that

ξ · γδ ≤ (ξ + δh) · γδ = f ∗δ (ξ + δh) · An−1
δ = Anδ +Bδ · An−1

δ .

By (14.4) and the first inequality in (?), we have that

Bδ · An−1
δ ≤ (C1 · hn · vol(ξ + δh)− vol(Aδ))

1/2 ≤ C2 · δn

where Ci are constants independent of δ. The above inequality, (?) and
(]) toghether imply that

([)
ξ · γδ
h · γδ

≤ Anδ + C2 · δn

(hn)1/n · (Anδ )(n−1)/n
≤ C3 · (Anδ )1/n + C4 · δ

where Ci are constants independent of δ. Now vol(ξ) = 0 so that for
δ → 0, we have

limAnδ = lim vol(Anδ ) = lim vol(ξ + δh) = 0.

By ([) we then have

lim
ξ · γδ
h · γδ

= 0

which is the required contradiction. �

15. Rationally Connected Fibrations

Recall the following.

Definition 15.1. d-long Let X be a smooth complex projective variety,
then

(1) X is rational if it is birational to PnC i.e. C(X) ∼= C(x1, . . . , xn).
(2) X is unirational if there is a dominant rational map Pm

C 99K X
i.e. if there are inclusions C ⊂ C(X) ⊂ C(x1, . . . , xm).
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(3) X is rationally connected if for any two general points p and
q there is a rational curve C passing through p and q.

(4) X is uni-rationally if for any general point p ∈ X there is a
rational curve C passing through p (i.e. if KX is not pseudo-
effective cf. (14.5)).

Remark 15.2. Clearly rational implies unirational which implies ratio-
nally connected which implies unirational. Note that if X is unirational,
then κ(X) < 0 and if X is rationally connected, then h0(Ω1

X) = 0.

Theorem 15.3. If dimX ≤ 2, then X is rational if and only if it is
unirational or rationally connected.

Proof. By (15.2), it suffices to show that if X is rationally connected
then it is rational. In this case, we have P2(X) = h0(ω⊗2

X ) = 0 and
h0(Ω1

X) = 0. If dimX = 1 this means that the genus of X is 0 and
so X is P1

C. If dimX = 2, then by a theorem of Castelnuovo, X is
rational. �

Remark 15.4. In dim ≥ 3 there are uniruled varieties that are not
rational. It is not known if rationally connected are allways unirational.
Note that by a Theorem of Campana and Kollár-Mori-Myiaoka, any
Fano manifold (−KX is ample) is rationally connected. Eg. a general
hypersurface in Pn+1 of degree n + 1 with n � 0 and a 2 − 1 cover of
Pn branched along a general divisor of degree 2n with n� 0. We don’t
know if these varieties are unirational.

Theorem 15.5. If dimX = 2, then X is uniruled if and only if κ(X) <
0.

Corollary 15.6 (Lüroth’s problem). Let C ⊂ L ⊂ C(x, y) be any field.
Then L ∼= C or L ∼= C(t) or L ∼= C(s, t).

Remark 15.7. It is known that X is rationally connected if and only
if there is a morphism f : P1

C → X such that f ∗TX is ample (if n ≥ 3
this is equivalent to the existence of a smooth rational curve with ample
normal bundle).

Lemma 15.8. Given any two points p, q on a smooth rationally con-
nected variety X, there is a chain of rational curves containing p and
q.

It is conjectured that

Conjecture 15.9. Let X be a smooth complex projective variety, then

(1) X is rationally connected if and only if h0(X, (Ω1
X)⊗m) = 0 for

all m > 0.
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(2) X is uniruled if and only if h0(ω⊗mX ) = 0 for all m > 0.

Note that the second part is known in dimension ≤ 3 by the MMP.
The second part is known to imply the first part cf. (15.12)

Definition 15.10. Let X be a smooth complex projective variety. The
maximally rationally connected fibration (MRC fibration) is a
morphism π : X ′ → Z such that X ′ is birational to X, the general fiber
of π is rationally connected and for any z ∈ Z very general, then any
rational curve on X ′ which meets the fiber X ′z is contained in Xz.

The existence of MRC fibrations is guaranteed by a result of Cam-
pana and Kollár-Mori-Myiaoka. It is unique up to birational equiva-
lence. Recall the following fundamental result of Graber-Harris-Starr:

Theorem 15.11. Let π : X → B be a proper morphism of smooth
complex varieties where dimB = 1. If the general fiber of π is rationally
connected then there is a section of π.

Corollary 15.12. The image Z of the MRC fibration π : X ′ → Z is
not uniruled.

15.1. singular varieties. The situation is more complicated for sin-
gular varities. The following definitions are useful.

Definition 15.13. Let X be a reduced separated scheme of finite type
over C, then X is is rationally chain connected if for any 2 general
points p, q ∈ X, there is a connected chain of rational curves C = ∪Ci
containing p and q. If V ⊂ X is a closed subset, then X is is rationally
chain connected modulo V if for any 2 general points p, q ∈ X, there
is a connected chain of curves C = ∪Ci containing p and q such that
if Ci is not rational then Ci ⊂ V .

Remark 15.14. Note that if X is a smooth variety, then X is ratio-
nally chain connected if and only if it is rationally connected. This fails
for singular varieties. Eg. let X be a cone over an elliptic curve, then
X is rationally chain connected but it is not rationally connected.

We have the following result of Hacon and McKernan.

Theorem 15.15. Let (X,B) be a log pair and f : X → S be a projec-
tive morphism such that −KX is relatively big and OX(−m(KX +B))
is relatively generated for some m > 0. Let g : Y → X be any birational
morphism and π = f ◦ g.

Then, every fiber of π is rationally chain connected modulo g−1NKLT(X,B).
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Corollary 15.16. If (X,B) is a kawamata log terminal pair and f :
X → S is a projective morphism such that −(KX +B) is relatively nef
and −KX is relatively big.

Then every fiber of f is rationally chain connected (and in fact ra-
tionally connected).

Corollary 15.17. If (X,B) is a kawamata log terminal pair and g :
Y → X is any proper birational morphism, then the fibers of g are
rationally chain connected.

Corollary 15.18. If (X,B) is a kawamata log terminal pair, then
(X,B) is rationally connected if and only if it is rationally chain con-
nected

Corollary 15.19. If (X,B) is a kawamata log terminal pair and f :
X 99K Y is a rational map of normal projective varieties, then for any
x ∈ X, the indeterminacy locus of x (given by q(p−1(x)) where Γ is the
graph and p : Γ→ X and q : Γ→ Y ) is covered by rational curves.

Corollary 15.20. If (X,B) is a kawamata log terminal pair and f :
X 99K S is a projective morphism with connected fibers such that
−(KX + B) is relatively nef and −KX is relatively big. Then for any
birational morphism g : Y → X, f ◦ g has a section over any curve.

Corollary 15.21. If (X,B) is a kawamata log terminal pair and −(KX+
B) is big and nef. Then X is rationally connected and in fact simply
connected.
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